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IID probability, exchangeability probability, and Cournot’s principle Let Ω := {0,1}N be the set of all sequences of
N binary observations. The upper IID probability of a set E ⊆Ω is Piid(E) := supp∈[0,1] B

N
p (E), where Bp is the Bernoulli

probability measure on {0,1} with Bp({1}) = p. The upper exchangeability probability of E ⊆Ω is Pexch(E) := supP P(E),
P ranging over the exchangeable probability measures on Ω. (We will not use the corresponding lower probabilities.)

The function Piid can be used when testing the IID hypothesis: if Piid(E) is small (say, below 5% or 1%) and the
observed sequence ω is in E that is chosen in advance, we are entitled to reject the hypothesis that the observations in ω

are IID. Similarly, Pexch can be used when testing the hypothesis of exchangeability. This is Cournot’s principle.

Proposition 1 For any E ⊆Ω, Piid(E)≤ Pexch(E)≤ 1.5
√

NPiid(E).

This proposition follows easily from Stirling’s formula. (Detailed proofs are given in [1].) The difference between Piid and
Pexch (which is O(logN) on the log scale) has been regarded by some writers on the algorithmic theory of randomness
(including Andrei Kolmogorov) as small enough to be disregarded.

Conformal change detection Let us now drop the assumption that the observations are binary, replacing Ω by ZN for
any measurable space Z. A standard assumption in machine learning and nonparametric statistics is that the data are
generated in the IID fashion. How can we test this assumption? Conformal change detection (or anomaly detection in the
terminology of [2]) is a way of turning standard machine-learning algorithms into stochastic processes, called conformal
martingales, that are martingales under any IID distribution. This method, which is even used in practice [2], is really
simple, and all details will be given in the poster. A conformal martingale consists of random variables Sn, n = 0,1, . . . , that
depend not only on z1, . . . ,zn but also on internal coin tossing. We only consider nonnegative conformal martingales with
S0 > 0. Ville’s inequality says that, for any c > 1, P(∃n : Sn/S0 ≥ c)≤ 1/c under any IID distribution. We can interpret
Sn/S0 directly as the amount of evidence detected against the first n observations being IID.

A typical example of change detection is where we observe attacks, which we assume to be IID, on a computer system.
When a new kind of attacks appears, the process ceases to be IID, and we would like to raise an alarm soon afterwards.
Raising an alarm when Sn/S0 exceeds a threshold c > 1 makes sure that the probability of a false alarm is at most 1/c.

Conformal probability A natural question is how much we can potentially lose when using conformal martingales as
compared with unrestricted testing (with either Piid or Pexch). The upper conformal probability of E ⊆ ZN is Pconf(E) :=
inf{S0 : SN ≥ 1E a.s.}, where S ranges over the nonnegative conformal martingales, 1E is the indicator of E, and “a.s.”
refers to the internal coin tossing. The smallness of Pconf(E) means not only that E is unlikely under the IID assumption
(by Ville’s inequality) but also that this fact can be detected by conformal martingales. Now let us return to the binary case
Z := {0,1}.

Proposition 2 For any E ⊆Ω, Piid(E)≤ Pconf(E)≤ NPexch(E).

Open question: Can the coefficient N be improved?
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