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Abstract
Inferential challenges that arise when data are cor-
rupted by censoring have been extensively studied un-
der the classical frameworks. In this paper, we provide
an alternative approach based on a generalized inferen-
tial model whose output is a data-dependent possibility
distribution. This construction is driven by an associa-
tion between the censored data, parameter of interest,
and unobserved auxiliary variable that takes the form
of a relative likelihood. The possibility distribution
then emerges from the introduction of a nested ran-
dom set designed to predict that unobserved auxiliary
variable and is calibrated to achieve certain frequentist
guarantees. The performance of the proposed method
is investigated using real and simulated data.
Keywords: Inferential model; Kaplan–Meier estima-
tor; likelihood; Monte Carlo; random set.

1. Introduction
Data are said to be censored when at least one of the ob-
servations is incomplete, i.e., only an interval that contains
the actual value is available. For example, in clinical trials
or other time-to-event studies, it may happen that only a
lower bound for the event time is observed because subjects
drop out of the study, or the study ends before the event
takes place. This is called right-censoring. Alternatively,
in environmental applications, it may happen that only an
upper bound on a chemical content is observed because the
available device is limited to a certain detection level. This
is called left-censoring. Of course, a combination of left-
and right-censoring, or interval-censoring, is possible as
well. Beyond censoring direction, there are also Type I and
Type II classifications, but we refer the reader to Klein and
Moeschberger (2003) for these details. For concreteness,
we focus on Type I right-censored data in a time-to-event
setting, but it is easy to apply the same ideas for left- or
interval-censored data and for contexts other than time.

Let Xi denote the event time and Ci the censoring time
for unit i = 1, . . . ,n. Under right censoring, the observed
data consists of the pair

Ti = min(Xi,Ci), Di = 1(Xi ≤Ci), i = 1, . . . ,n, (1)

where 1(·) is the indicator function, so that Di identifies
whether Ti is an event time or a censoring time. Let Y =
{(Ti,Di) : i = 1, . . . ,n} denote the observable data.

A common assumption that we will adopt here is that of
random censoring, where X1, . . . ,Xn are independent and
identically distributed (iid) with continuous distribution
function Fθ , depending on a parameter θ ∈ Θ; C1, . . . ,Cn
are iid with distribution function G; and the Xi’s and Ci’s
are independent of one another (Lawless, 2011). Since the
variables are time (or some other “amount”), the statistical
models, Fθ , considered here and throughout the literature
on this topic are supported on subsets of (0,∞) and are
typically right-skewed. The goal is to make inference on
the unknown parameter θ of the time-to-event distribution;
G is an unknown nuisance parameter assumed to have no
dependence whatsoever on θ .

For data y = {(ti,di)} observed from a random,
Type I, right-censored data generating process, Klein and
Moeschberger (2003, Sec. 3.5) gives the likelihood function

Ly(θ) =
n

∏
i=1

fθ (ti)di F̄θ (ti)1−di , θ ∈Θ, (2)

where fθ = F ′
θ

and F̄θ = 1−Fθ are the density and survival
functions corresponding to Fθ , respectively. From the likeli-
hood in (2), it is relatively straightforward to produce point
estimates, asymptotic confidence regions, or even Bayesian
posterior distributions (Ibrahim et al., 2001). These results,
however, are not fully satisfactory as their coverage proba-
bilities can be far from the target in finite samples.

In this paper, we take an alternative approach to con-
struct an inferential model whose output takes the form
of a data-dependent possibility distribution (Dubois and
Prade, 2012). This construction relies on a particular con-
nection between the data, parameter, and an unobservable
auxiliary variable. Here, following the recommendations in
Martin (2015, 2018), we make use of an association driven
by the relative likelihood partially determined in (2). The
possibility distribution arises from the introduction of a
(nested) random set aimed to predict that unobserved auxil-
iary variable. An important consequence of this particular
construction is that the possibility distribution output inher-
its a calibration or validity property. A precise statement is
given in Section 2, but validity implies that the confidence,
or possibility, regions derived from the inferential model
achieve nominal frequentist coverage probability.

Unfortunately, the presence of censoring complicates the
basic inferential model construction and validity properties
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described in the references above. Here we propose an ex-
tension of that basic approach, one that makes novel use of
the Kaplan–Meier estimator (e.g., Kaplan and Meier, 1958)
for the censoring distribution G. In particular, this estimator
is embedded naturally in an algorithm for evaluating the
possibility distribution via Monte Carlo. From this, one can
immediately evaluate the necessity and possibility of any
hypothesis about θ , and inference drawn from these values
is valid, at least approximately, in the sense described in
Section 2. Details of this construction and its properties are
presented in Section 3 and numerical examples comparing
the proposed solution to that of more traditional methods
are given in Section 4. Finally, some concluding remarks
are given in Section 5.

2. Inferential Models
For observable data Y ∈ Y, consider a statistical model
{PY |θ : θ ∈Θ} that contains candidate probability distribu-
tions for Y , indexed by a parameter space Θ; throughout
we write Y ∼ PY |θ to mean “Y is distributed according
to PY |θ .” As presented in Martin and Liu (2013, 2015),
an inferential model is a map from the available inputs,
including observed data and posited statistical model, to
a data-dependent function, by : 2Θ → [0,1], where by(A)
denotes the data analyst’s degree of belief about the hypoth-
esis A ⊆ Θ based on the observed data Y = y. Naturally,
inferences would be drawn from by. This definition of in-
ferential model encompasses many different approaches,
including those based on additive beliefs, e.g., Bayes, fidu-
cial, and others, as well as non-additive beliefs like those
discussed below, among others. It is up to the data analyst
to specify their own degrees of belief, these cannot be de-
rived uniquely from the data and posited statistical model.
Note that, while additive beliefs are the most common in
statistical applications, if the data is not especially informa-
tive, then perhaps both by(A) and by(Ac) should be small,
and a non-additive by would facilitate this.

What other properties should by have? If the goal is just
individual decision-making, then the beliefs based on by
are what they are, hence nothing is left to be done. But in
scientific applications, like we have in mind here, if it is
desired that large by(A) be interpreted as support for the
claim that Ac is false, then it becomes essential that the de-
grees of belief be calibrated so that we know what a “large”
by means, and consequently avoid making “systematically
misleading conclusions” (Reid and Cox, 2015). We formal-
ize this need for an inferential model to be calibrated in
terms of the following validity constraint: that by satisfies

sup
θ 6∈A

PY |θ{bY (A)> 1−α} ≤ α,

{
∀ α ∈ (0,1)
∀ A⊆Θ.

(3)

That is, if the hypothesis A is false, so that A 63 θ , the degree
of belief bY (A), as a function of Y ∼ PY |θ , will be stochas-

tically no larger than Unif(0,1). This validity condition can
equivalently be expressed in terms of the plausibility func-
tion, py(A) = 1−by(Ac), the belief function’s dual (Shafer,
1976). This dual inferential model output is valid if

sup
θ∈A

PY |θ{pY (A)≤ α} ≤ α,

{
∀ α ∈ (0,1)
∀ A⊆Θ.

(4)

Following this constraint, the plausibility output is placed
on an objective Unif(0,1) scale and is said to be valid. In
other words, uniform quantiles can be used to interpret
the observed degrees of plausibility (or belief) magnitudes,
and decisions based on such an interpretation will control
frequentist error rates (Martin, 2018).

Based on the false confidence theorem in Balch et al.
(2017), Martin (2019) argues that validity as in (3) requires
that the degrees of belief be non-additive. Since we take this
validity property to be fundamental to the logic of statistical
inference, we focus here on genuinely non-additive degrees
of belief, in particular, necessity/possibility functions (e.g.,
Dubois and Prade, 2012; Dubois, 2006).

How to construct a valid inferential model? The origi-
nal construction in Martin and Liu (2013), starts with an
association, i.e., a characterization of the statistical model
based on what is called an auxiliary variable. The prototype
for this takes the form

Y = a(θ ,U), U ∼ PU , (5)

where a is a given function and PU is a distribution for
U ∈ U that does not depend on any unknown parameters.
This describes an algorithm for simulating from PY |θ but
also guides our intuition about inference. That is, if U were
observable, along with Y , then the best possible inference
follows by simply solving (5) for θ , as in (6). Since U is ac-
tually unobservable, it is tempting to create a sort of “poste-
rior distribution” for θ by taking draws from PU , plugging
them into (5), with the observed Y = y, and solving for θ .
This is basically Fisher’s fiducial argument (e.g., Fisher,
1973; Dempster, 1963; Hannig et al., 2016), which gener-
ally leads to additive beliefs that necessarily fail to meet
the validity condition. Non-additivity can be introduced
by stretching fiducial’s draws from PU into a random set
designed to hit the unobserved value of U in (5) that corre-
sponds to the observed Y = y and the true value of θ . The
following three steps summarize this construction.

A-step Given the association (5) and the observed Y = y,
define the focal elements

Θy(u) = {θ : y = a(θ ,u)}, u ∈ U. (6)

P-step Introduce a random set S ∼ PS, taking values in
2U, designed to predict the unobserved value of U in (5).



C-step Combine the output of the A- and P-steps to get a
new random set

Θy(S) =
⋃
u∈S

Θy(u), S∼ PS,

and define the belief function,

by(A) = PS{Θy(S)⊆ A}, A⊆Θ,

and its dual, the plausibility function, py(A) = 1−by(Ac).

Under very mild conditions on the user-specified random
set S, the corresponding inferential model is valid in the
sense of (3). Indeed, the only requirement is that S be cal-
ibrated in a certain sense to predicting unobserved draws
from PU . This is relatively easy to arrange because PU
is known and S∼ PS is user-specified. More specifically,
let γ(u) = PS(S 3 u), an ordinary function on U, be de-
termined implicitly by PS; note that γ is the plausibil-
ity contour corresponding to S. Then validity as in (3)
corresponds to a stochastic dominance property, namely,
γ(U)≥st Unif(0,1). For example, in what follows, we work
with a random set S of the form

S= [Ũ ,1], Ũ ∼ PU := Unif(0,1), (7)

so that γ(u) = u and, hence, γ(U) = U ∼ Unif(0,1).
Though not strictly necessary for validity, efficiency consid-
erations suggest that S be nested, like in (7), which makes
the belief function consonant; the validity property together
with consonance is reminiscent of the confidence structure
developments in Balch (2012). With this construction, the
inferential model output becomes a necessity and possibil-
ity function pair, which we will henceforth denote as necy
and posy, respectively.

As Martin (2018) argued, the above formulation can be
rather rigid; greater flexibility and, in some cases, improved
performance can be gained by working with a so-called
generalized association, one that does not fully characterize
the posited statistical model. We describe this generalized
association in the present context below and propose a
Monte Carlo strategy to overcome the challenges that arise
when data are corrupted by censoring.

3. A Valid Inferential Model under
Censoring

Consider a situation like the censored-data problem de-
scribed in Section 1, where a likelihood function is straight-
forward, but a formal association that encodes the data-
generation process is difficult to ascertain. One can consider
a generalized association of the form

RY,θ = H−1
θ

(U), U ∼ PU = Unif(0,1), (8)

where Ry,θ is some real-valued function of (y,θ) and Hθ is
its distribution function,

Hθ (r) = PY |θ ,G{RY,θ ≤ r}, r ∈ R.

The distribution PY |θ ,G is that of Y defined according to
the rule (1) with (θ ,G) as the unknown parameters. Unlike
(5), (8) does not describe the data-generation process, it
only establishes a relationship between data, parameter,
and auxiliary variable, which is all that was needed for the
inferential model construction described above.

The advantage of this generalized association is that we
have directly reduced the dimension of the auxiliary vari-
able, from at least the dimension of θ down to 1. This
greatly simplifies the construction of a (good) random set
S for predicting that unobservable quantity. But what is an
appropriate choice of Ry,θ ? The options are indeed unlim-
ited. Since dimension reduction would generally result in
loss of information, and since we prefer to retain as much
information as possible, we opt to take Ry,θ as the relative
likelihood

Ry,θ = Ly(θ)/Ly(θ̂), (9)

where θ̂ is the maximum likelihood estimator, i.e., θ̂ =
argmaxϑ Ly(ϑ). Extensive studies have explored the use of
relative likelihood to define degrees of belief (e.g., Shafer,
1976; Wasserman, 1990), but they focus on examples where
the likelihood cannot be normalized or where a normalized
likelihood is misleading (Shafer, 1982). Our approach dif-
fers in the sense that we can evaluate the distribution of the
relative likelihood by Monte Carlo. From here, the inferen-
tial model construction is conceptually straightforward.

A-step Set Θy(u) = {θ : Ry,θ = H−1
θ

(u)} for u ∈ [0,1].

P-step Define S = [Ũ ,1], where Ũ ∼ Unif(0,1) like in
(7); so that the distribution, PS, is fully determined by the
uniform distribution.

C-step Combine the two sets above to get

Θy(S) =
⋃
u∈S

Θy(u)

= {θ : Hθ (Ry,θ )≥ Ũ}, Ũ ∼ Unif(0,1).

Then the possibility contour is

posy(θ) := PS{Θy(S) 3 θ}= Hθ (Ry,θ ), θ ∈Θ,

which determines the possibility and necessity functions.

An important observation, as discussed in Martin (2018),
is that the generalized association above can relate the data
Y and parameter θ to a scalar auxiliary variable U . In
the basic inferential model construction of Martin and Liu
(2013), usually the dimension of U is determined by that of
θ , which subsequently requires the specification of a “good”



multi-dimensional random set. While we are not inhibited
by such a challenge in the present context, our reviewers
have suggested p-boxes from Troffaes and Destercke (2011)
as a useful strategy in future extensions. Here, however,
the baseline formulation is in terms of a scalar auxiliary
variable and the structure immediately suggests a good
random set S in (7).

That the corresponding inferential model satisfies the va-
lidity property follows immediately from the arguments pre-
sented in Martin (2018). Since our predictive random sets
are tailored such that the possibility contours are stochasti-
cally no larger than uniform, i.e., Hθ (RY,θ )≤st Unif(0,1)
when Y ∼ PY |θ ,G, and therefore

sup
θ∈A

PY |θ ,G{posY (A)≤ α} ≤ α,

{
∀ α ∈ (0,1)
∀ A⊆Θ.

(10)

A desirable consequence of validity is that confidence re-
gions having the nominal frequentist coverage probability
can be constructed immediately based on the possibility
function output. Indeed, the set

{θ : posy(θ)> α} (11)

is a nominal 100(1− α)% confidence region for any
α ∈ (0,1). This follows since the probability that the above
region contains the true parameter value θ equals the prob-
ability that posY (θ)> α which, in turn, equals 1−α .

Putting the above inferential model construction into
practice requires that the distribution function Hθ be eval-
uated, at least approximately, for every θ . This is straight-
forward to do, albeit potentially tedious computationally,
when data are not censored. This is similarly straightfor-
ward if data are censored but the censoring distribution G
is known. Indeed, a simple Monte Carlo approximation is
available:

Hθ (r)≈
1
M

M

∑
m=1

1{RY (m),θ ≤ r}, (12)

where {Y (m) : m = 1, . . . ,M} are independent copies of
Y ∗ = {(T ∗i ,D∗i ) : i = 1, . . . ,n} and (T ∗i ,D

∗
i ) as in (1), with

X∗i iid from Fθ and C∗i iid from the known censoring dis-
tribution G. However, in our present context, Hθ depends
(implicitly) on the unknown distribution G of censoring
times, so something more sophisticated than that simple
strategy just described is needed. Here we recommend us-
ing a plug-in estimator of G.

The Kaplan–Meier estimator was not originally designed
to estimate the censoring distribution function, but it is
straightforward to simply reverse the event/censored classi-
fication. That is, we still observe Ti = min(Xi,Ci) but now
we think of Ci as the “event time” and Xi is the “censoring
time.” Then we construct the Kaplan–Meier estimator, Ĝ,
of G based on this alternative perspective.

After swapping the observed/censored classifications,
obtaining the Kaplan–Meier estimate is straightforward;
we use the built-in functions in R’s survival package
(Therneau, 2015). But there are a few technical points worth
making about the estimation process. Recall that, in typical
applications of the Kaplan–Meier estimator of a survival
function S(t), if the largest observation corresponds to a
“censored” outcome, then Ŝ(t) does not vanish as t → ∞,
which amounts to putting some positive amount of mass at
∞. In our context, since we interpret the original event times
as censored times, our estimate Ĝ will put positive mass
at ∞ when the largest observation is an event. Therefore,
when the censoring level is relatively high, we expect our Ĝ
to put mass at ∞, which means that some C∗i ’s drawn from
Ĝ will equal ∞ and, consequently, T ∗i corresponds to an
event time as X∗i <C∗i . This ensures that the Monte Carlo
sample, Y ∗, reflects the censoring level in the original data.

Can anything be said about validity of the inferential
model derived from the above algorithm with the plug-in
estimator Ĝ? That is, can we conclude that

PY |θ ,G{posY (θ ; Ĝ)≤ α} ≤ α,

at least approximately? Here posy(θ ; Ĝ) denotes the possi-
bility function obtained by applying the above algorithm
with Ĝ plugged in for the unknown G, i.e., simulating
C∗i ’s iid from Ĝ instead of the unknown G. The depen-
dence of posy(θ ; Ĝ) on the Kaplan–Meier estimator, an
infinite-dimensional quantity, is quite complicated, so a
precise mathematical result is not yet available. But we
can give some strong heuristics and numerical results to
support a conjecture of (approximate) validity. First, the
Kaplan–Meier estimator itself is known to have certain
desirable asymptotic properties such as consistency (e.g.,
Meier, 1967) and a fast rate of convergence (e.g., Fleming
and Harrington, 1991, Chap. 6), which suggests that

posy(θ ; Ĝ)≈ posy(θ ;G) =: posy(θ)

and, hence, posY (θ ; Ĝ) is approximately Unif(0,1) be-
cause posY (θ ;G) is. Therefore, consistency of Ĝ and va-
lidity in the known-G case together suggest approximate
validity of the proposed plug-in approach. Second, nu-
merical experiments support our claim of approximate va-
lidity. In one example, we take 10,000 samples of size
n = 50 in which Xi’s are generated from a standard ex-
ponential subject to random right censoring from the
Unif(0,5). A Monte Carlo estimate of the distribution func-
tion α 7→ PY |θ ,G{posY (θ ; Ĝ) ≤ α} is shown in Figure 1
is approximately uniform, with further confirmation from
the Kolmogorov–Smirnov test, hence our motivation for
approximate validity. Simulated- and real-data examples in
Section 4 below demonstrate the proposed method’s strong
performance compared to others, and provide further sup-
port for our approximate validity claim.
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Figure 1: Distribution of α 7→ PY |θ ,G{posY (θ ; Ĝ) ≤ α}
(black) compared with that of Unif(0,1) (red)
based on Monte Carlo samples from a standard
exponential distribution subject to random right
censoring. The average censoring level among
all 10,000 replications at this setting is 19.9%.

4. Examples

We compare our proposed approach against frequentist
and Bayesian methods with simulated and real data. The
exponential and Weibull examples are taken from the
survival package in R, while the last log-normal ex-
ample is taken from Krishnamoorthy and Xu (2011). We
consider these three parametric distributions that are com-
monly used in time-to-event analyses, and we generate
10,000 replications of censored data under various settings
of these distributions. We repeat each set of simulations
at four sample sizes of n ∈ {15,20,25,50}. As our fol-
lowing results suggest, possibility measures consistently
outperform the more familiar methods, achieving nearly
the nominal 100(1−α)% coverage rate across different
distributions, parameter settings, and sample sizes.

4.1. Exponential

The classic time-to-event distribution is exponential, char-
acterized by a constant hazard rate θ > 0, in which the
density function is fθ (t) = θe−θ t . For n items, indepen-
dently subject to random right censoring, summarized by
y = {(ti,di)} as above, the maximum likelihood estimate is
θ̂ = ∑

n
i=1 di/∑

n
i=1 ti. From its asymptotic normality, a 95%

confidence interval is easily obtained as θ̂ ±1.96I(θ̂)−1/2,
where I(θ̂) is the observed information. From a Bayesian
standpoint, the censoring mechanism can be safely ignored
as the likelihood can be formed from (2) and combined with
a conjugate Gamma(α0,β0) prior to arrive at the posterior

Gamma(α0 +∑
n
i=1 di,β0 +∑

n
i=1 ti). Posterior credible in-

tervals are then easily obtained.
From an inferential model perspective, we begin with the

baseline association of the relative likelihood for θ ∈Θ,

θ ∑i Die−θ ∑i Ti

θ̂ ∑i Die−θ̂ ∑i Ti
= H−1

θ
(U), U ∼ PU = Unif(0,1). (13)

As described above, we write RY,θ for the left-hand side of
the above display. For fixed data y, we follow through our
A-step with the singleton-valued map

Θy(u) = {θ : Ry,θ = H−1
θ

(u)}, u ∈ [0,1].

Next, the P-step requires introducing a predictive random
set S in (7) for U . We then combine our A- and P-steps

Θy(S)=
⋃
u∈S

Θy(u)= {θ : Hθ (Ry,θ )≥ Ũ}, Ũ ∼Unif(0,1).

And we summarize the distribution of this random set Θy(S)
by a possibility function

posy(θ) = Hθ (Ry,θ ), θ > 0.

A 100(1−α)% “confidence interval” can be obtained as
the upper level set of the possibility function as in (11).
Evaluating this possibility function requires Monte Carlo
procedure discussed in Section 3.

For numerical illustration, we simulate 10,000 replica-
tions of lifetimes arising from nine different θ settings in
the exponential distribution. For each of these 90,000 simu-
lations, the lifetimes X1, . . . ,Xn ∼ Fθ generated were sub-
ject to random right censoring from C1, . . . ,Cn∼Unif(0,5),
allowing us to compare the coverage of our inference proce-
dure under a wide range of censoring levels. Results shown
in Figure 2 demonstrate that the nominal 100(1−α)% cov-
erage is attainable, thus supporting our validity conjecture.

For a real-data illustration, we consider the primary bil-
iary cirrhosis (PBC) data from a clinical trial at the Mayo
Clinic from 1974 to 1984. The data consists of n = 312
recorded survival times for patients involved in the random-
ized trial, along with a corresponding right censoring indi-
cator; there are 168 censored cases, more than 50% of total
observations. Figure 3 shows the point possibility function
posy(θ) for a range of parameter values, along with the cor-
responding 95% possibility interval (11). For comparison,
95% confidence intervals based on asymptotic normality of
the maximum likelihood estimate are also displayed. The
intervals derived from the possibility function are almost in-
distinguishable from the likelihood-based intervals, which
is a sign of our proposed approach’s efficiency, since the
latter are the asymptotically “best” intervals.

4.2. Weibull

One of the most widely used time-to-event distributions
is the Weibull, with applications in manufacturing, health,
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Figure 2: Coverage probability of the 95% possibility re-
gion for θ in the exponential model (black). Re-
sults compared to those based on maximum like-
lihood (red) and Bayesian with a Gamma(2,1)
prior (green). From top to bottom, data are gen-
erated with sample size n = 15,20,25,50.
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Figure 3: Point possibility functions for the mean in
the PBC example under an exponential model
(black). Reference line at α = 0.05 (dotted) and
approximate 95% confidence intervals based on
maximum likelihood (red).

etc., as it has sufficient flexibility to capture changes in the
hazard rate (Lawless, 2011). Exponential is a special case
of Weibull when the shape parameter β = 1. The density
and survival functions, indexed by θ = (β ,λ ), are

fθ (t) = λβ tβ−1 exp(−λ tβ ), F̄θ (t) = exp(−λ tβ ).

Similar to the setup as described for the exponential exam-
ple, we compare the performance of our proposed approach
against that of a more traditional frequentist or objective
Bayesian approach. An inferential model requires that we
simulate the distribution of RY,θ ; so for a finite grid of
θ = (β ,λ ) values, for each pair, 500 Monte Carlo sam-
ples of Y ∗ are obtained by taking the minimum between
realizations of X∗ ∼Weib(β ,λ ) and C∗ ∼ Ĝ, the modified
Kaplan–Meier estimate. We implement this procedure for
10,000 replications of lifetimes arising from six different
settings of the Weibull distribution. These 60,000 repli-
cations were each subject to random right censoring from
G∼Unif(0,4). As shown in Figure 5, we demonstrate good
agreement between nominal and actual coverage from our
new approach in finite sample settings.

For a real-data example, we consider survival data on
ovarian cancer patients from a clinical trial that took place
from 1974 to 1977. This data set has n = 26 survival times
for patients that entered the study with stage II or IIIA
cancer and were treated with cyclophosphamide alone or
cyclophosphamide with adriamycin. Of this patient group,
14 survived (or was censored) by the end of the study, while
12 died (Edmonson et al., 1979). Despite the small sam-
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Figure 4: Possibility contour (black) for θ = (β ,λ ), the
shape and scale parameter pair, in the ovarian
cancer data under a Weibull model subject to
Type I right censoring. Bayesian posterior sam-
ples based on a Gamma(1,0.1) prior for the
shape and N(0,10) prior for the log transformed
scale parameter (gray).

ple size and high censoring level, our possibility contours
capture the non-elliptical shape as shown by the Bayesian
posterior in Figure 4.

4.3. Log-Normal

Within environmental science, the log-normal distribution
is often used to approximate data that are censored to the
left, e.g., chemical pollutants that can only be detected
above some minimal threshold (Krishnamoorthy and Xu,
2011). The density function, indexed by θ = (µ,σ), is

fθ (t) =
1

(2π)1/2σt
exp
{
−1

2

( log t−µ

σ

)2}
.

Similar to our examples above, we compare the coverage
performance of our possibility contours against that of
ellipses based on asymptotic normality of the maximum
likelihood estimator and posterior credible regions based
on a Gamma(1,0.1) prior on the precision τ = σ−2 and
N(0,1000/τ) prior on the mean. Again, 10,000 replica-
tions of censored data were generated from 11 different
settings of the log-normal distribution, subject to left cen-
soring under G ∼ Unif(0,1). In order to approximate the
distribution of RY,θ , however, our modified Kaplan–Meier
estimate Ĝ now requires putting positive mass at 0 when the
smallest observation corresponds to an actual event record,
so the challenges we encountered under right censoring
are simply reversed. As shown in Figure 8, under various
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Figure 5: Coverage probability of the 95% possibility
region for θ = (β ,λ ) in the Weibull model
(black). Results compared to maximum likeli-
hood (red) and Bayesian intervals based on a
Gamma(0.1,1) prior on the shape and N(0,10)
prior on the log transformed scale (green). From
top to bottom, data are generated from a fixed
sample size of n = 15,20,25,50.
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Figure 6: Possibility contours at each α = 10% increment
level beginning at 20% for the Atrazine exam-
ple under a log-normal model with Type I left
censoring.
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Figure 7: Marginal possibility function for inference on
the mean ψ = exp(µ +σ2/2) in the Atrazine
example. Reference line at α = 0.05% (dotted)
and the maximum likelihood estimate (red).

censoring levels, our proposed method outperforms with
nominal 100(1−α)% coverage.

We use Atrazine concentration data collected from a
well in Nebraska as an example. This set of 24 observations
were randomly subject to two lower detection limits of
0.01 and 0.05 µg/l of which 11 observations were censored.
Despite this censoring level of 45.8%, previous studies in-
dicate the log-normality assumption holds (Helsel, 2005).
We apply our Monte Carlo approach to determine the joint
possibility contours for θ = (µ,σ2) in Figure 6, along with
the marginal possibility function for the log-normal mean,
ψ = exp(µ +σ2/2), in Figure 7. The point at which we
assign the highest possibility aligns with the maximum
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Figure 8: Coverage probability of the 95% possibility in-
terval for ψ = exp(µ +σ2/2) in the log-normal
model (black). Results compared to maximum
likelihood (red) and Bayesian intervals based on
a Gamma(1,0.1) prior on the precision τ = σ−2

and N(0,1000/τ) prior on the mean (green).
From top to bottom, data are generated from
a fixed sample size of n = 15,20,25,50.



likelihood estimator, µ̂ = −4.206 and σ̂ = 1.462 (Krish-
namoorthy and Xu, 2011).

5. Conclusion

In this paper, we proposed a specific inferential model
construction for contexts in which the data are corrupted
via censoring. The main obstacle is that the censoring time
distribution is a unknown; despite not being of scientific
interest, the presence of an infinite-dimensional nuisance
parameter complicates the inferential model construction.
To overcome this challenge, we extend the generalized
inferential model framework in Martin (2018) to cover
the case of censoring according to a distribution G, and
then we propose a plug-in approximation to the known-G
inferential model construction with one that relies on a
modified version of the classical Kaplan–Meier estimator,
swapping the roles of event and censoring times. While a
fully rigorous proof of validity for this proposed approach is
still lacking, we provided here strong heuristics to support
that conjecture, along with convincing numerical results
across a range of settings. We demonstrate numerically
that the proposed inferential model approach outperforms
the more traditional maximum likelihood and Bayesian
solutions in terms of coverage probability of confidence
sets. And the resemblance between ours and the maximum
likelihood confidence intervals in large sample size settings
indicates that our coverage improvements are not at the
expense of efficiency. Thus the proposed inferential model
approach merits further investigation.

Aside from efforts to establish the validity property rig-
orously, it is of interest to explore more complicated and
practical types of censored-data models, e.g., ones where
censoring depends on covariates so that an assumption of
random censoring might not be warranted. In principle, the
approach described—with a generalized association based
on the distribution of relative likelihood—would also work
in more general cases, the optimization and Monte Carlo
computations required to evaluate the distribution function
Hθ would be much more involved. Ongoing efforts are fo-
cused on this and other more general improvements to the
simple Monte Carlo computations described here.
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