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Abstract
The aim of this paper is to present methods for im-
proving the convergence of an iterative importance
sampling algorithm for calculating lower and upper
expectations with respect to sets of probability distri-
butions. Our focus here is on the reuse and the combi-
nation of results obtained in previous iteration steps of
the algorithm.
Keywords: Monte Carlo simulation, importance sam-
pling, reweighting, imprecise probability, lower/upper
expectations, lower/upper probabilities.

1. Introduction

Our aim is to estimate the lower expectation

θ∗ = min
t∈T

∫
h(x) ft(x)dx (1)

of a function h with respect to a parametrized family of
probability density functions ft , over all t ∈ T . The case
of upper expectations θ ∗ can be treated in similar way.

In joint work with M. C. M. Troffaes [9] we studied the
convergence of an iterative importance sampling estimator
developed in [2, 7] and based on earlier work [4, 3, 8] by
formulating it as a fixed point of an operator. Here, we
present methods to improve the convergence of the iterative
importance sampling. These methods make use of results
obtained in previous iteration steps of the algorithm by
combining them. We think that these methods are comple-
mentary to the method of increasing the sample coverage
addressed in [9] which also improves convergence of the
fixed point iteration.

The plan of the paper is as follows: In Section 2 we in-
troduce importance sampling and in Section 3 the iterative
version following [9]. In Section 4 we show how to combine
results of previous iteration steps to improve convergence
and present an illustrative example.

2. Importance Sampling

Let ft be a density parametrized by t = (t1, . . . , tm) ∈ T .
We are interested in estimating the lower expectation in
(1) using Monte Carlo simulation and assume that samples
from ft can be generated as follows:

We start from a random variable V (e.g. uniform in
[0,1]k), and a function xt of V , such that xt(V ) ∼ ft .
For example, we have given the following: t = (µ,σ),
ft ∼ N(µ,σ2) and V = (U1,U2) which is uniformly dis-
tributed on [0,1]2. Then

xt(V ) = x(µ,σ)(V ) = µ +σ
√
−2lnU1 cos(2πU2) (2)

will have the desired Gaussian distribution [1]. The reason
for making the function xt explicit is that we need to control
the randomness throughout the iterative importance sam-
pling algorithm. We need to describe the sample itself as a
deterministic function of the parameter t because otherwise
the iteration would not work. That means that the sample
points are transformed by parameter t and not newly gener-
ated when changing t. This can also be achieved in a very
simple way: we only have to restart the random number
generator with always the same seed when generating a
new sample for a different parameter value t.

We start from an i.i.d. basic sample Ω = (V1,V2, . . . ,Vn),
to obtain the desired i.i.d. sample

xs(V1), . . . ,xs(Vn) (3)

from fs, for some fixed parameter s ∈T . Now, because∫
h(x) ft(x)dx =

∫ ft(x)
fs(x)

h(x) fs(x)dx, (4)

we can use this sample from fs to estimate the expectation
of h with respect to ft , for any t ∈T :

θ̂Ω,s(t) =
1
n

n

∑
i=1

wst(xs(Vi))h(xs(Vi)) (5)

with weights
wst(x) = ft(x)/ fs(x). (6)

We mention that this approach of using importance sam-
pling or reweighting techniques can also be found in
[5, 10, 11] and in [6] where it is called “what-if sampling”.

Our estimator θ̂Ω,s is based on a fixed set Ω of basic sam-
ples and on a fixed parameter s for which the sample points
xs(Vi) are generated. Alternatively, the self-normalised im-
portance sampling version can be used:

θ̂Ω,s(t) =
∑

n
i=1 w′st(xs(Vi))h(xs(Vi))

∑
n
i=1 w′st(xs(Vi))

(7)
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where w′st(x) are defined in the same way as the weights
wst(x) but only up to a normalisation constant of the densi-
ties involved.

A special case arises when s = t. In that case, we have
standard sampling:

θ̂Ω(t) = θ̂Ω,t(t) =
1
n

n

∑
i=1

h(xt(Vi)) (8)

because wtt(x) = 1 for all x. This would lead to the follow-
ing estimator for θ∗ [8]:

θ̂∗Ω = θ̂Ω(T∗Ω) = min
t∈T

θ̂Ω(t) (9)
where

T∗Ω = argmin
t∈T

θ̂Ω(t). (10)

A difficulty with calculating T∗Ω is that we need to eval-
uate h at all sample points xt(Vi), and these points will be
transformed as we change t in the optimizing algorithm
which needs re-evaluation of h. With importance sampling,
however, for fixed s, we only need to evaluate h for the sam-
ple points xs(Vi), independently of t. So if h is expensive to
evaluate (e.g. finite element computations in engineering
problems), then importance sampling is particularly useful,
because we do not need to re-evaluate h for different t when
optimizing over t.

For illustrating iterative importance sampling later on we
introduce an estimator which depends on the importance
sampling parameter s and on parameter t in which direction
we are optimizing:

ϑ̂Ω(s, t) = θ̂Ω,s(t). (11)

We note that this is an estimator of the function

ϑ(s, t) = θ(t) =
∫

h(x) ft(x)dx (12)

which does not depend on s. The function ϑ̂Ω has the fol-
lowing properties:

• In t-direction we have importance sampling for each
fixed s ∈T .

• On the diagonal s= t we have standard sampling since
ϑ̂Ω(s,s) = θ̂Ω(s).

By means of importance sampling we have the following
estimator for θ∗ depending on the importance sampling
parameter s [8]:

θ̂∗Ω(s) = ϑ̂Ω(s,τ∗Ω(s)) = min
t∈T

θ̂Ω,s(t), (13)
where

τ∗Ω(s) = argmin
t∈T

ϑ̂Ω(s, t) = argmin
t∈T

θ̂Ω,s(t). (14)

Remark: Standard sampling means that the sample points
have already the desired distribution with parameter t while

importance sampling means in this context that the sample
points are distributed according to another distribution with
parameter s which has to be compensated by reweighting
the sample as in Eq. (6). The original meaning of impor-
tance sampling is to put the sample points (choice of s)
where it is “important” to reduce the variance of the esti-
mator and then reweight as in Eq. (6).

Here, importance sampling is only an approximation
of standard sampling to speed up the computations by
reweighting the sample points instead of re-evaluating the
function h. But there is no special choice for the impor-
tance sampling parameter s as in the original meaning. In
[2] “real” importance sampling (design point method) was
used to obtain upper probabilities of failure for a reliability
engineering problem.

3. Iterative Importance Sampling
An issue with the importance sampling estimates is that
their quality can be very poor if τ∗Ω(s) is far from s, that
means far from the diagonal s = t where we have stan-
dard sampling. A procedure for iteratively improving the
choice of s was proposed in [2, 7] and further developed
and formalized in [9]. The procedure iteratively applies
the operator τ∗Ω. Under the assumption that this iterative
application

s(k+1) = τ∗Ω(s(k)), k = 1,2, . . . (15)

of the operator τ∗Ω reaches a unique fixed point, say S∗Ω,
our improved lower estimator is:

θ̂
†
∗Ω = ϑ̂Ω(S∗Ω,S∗Ω) = θ̂Ω,S∗Ω(S∗Ω) =

1
n

n

∑
i=1

h(xS∗Ω(Vi)).

(16)

Since the fixed point S∗Ω is on the diagonal s = t we have
standard sampling and not only an approximation using
importance sampling.

In numerical examples discussed in [2, 7, 8], normally, a
fixed point is indeed obtained after few steps which is cru-
cial to have an advantage over standard sampling. Needing
too many iteration steps may be more expensive than using
standard sampling as in Equation (9). However, τ∗Ω is not
necessarily continuous, and therefore it is not guaranteed
that a fixed point exists. Even if it is continuous, τ∗Ω is
not necessarily contracting, and therefore it is not guaran-
teed that a fixed point can be found. In [9] an example was
presented which shows that all three possible cases may
happen depending on the sample size n:

• Divergence (circling) for n = 1000.
• No unique fixed point and converging to the “wrong”

fixed point for n = 10000.
• Convergence to the unique fixed point for n = 100000.
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Figure 1: Exact probability θ , standard Monte Carlo estimation θ̂Ω and importance sampling estimators θ̂
Ω,s(1)=6,

θ̂
Ω,s(2)=−7, θ̂

Ω,s(3)=7 for the first three iteration steps and sample size n = 1000 (diverging case), as a func-
tion of t ∈ T = [−7,7] (left). Contour plot of exact function ϑ(s, t) = θ(t) and its minimum τ∗(s) = t∗ = 0
(right), for comparison with the contour plots of the estimators in Figures 2 and 5.

Asymptotically, as the sample size n increases, τ∗Ω
should have a fixed point S∗Ω, and both T∗Ω (from stan-
dard sampling) and S∗Ω should converge, in probability,
to

t∗ = argmin
t

θ(t). (17)

The intuition behind this is that ϑ̂Ω converges in probability
to ϑ as the sample size goes to infinity. This also means
that τ∗Ω converges to

τ∗(s) = argmin
t∈T

ϑ(s, t). (18)

But τ∗ is constant in s and has a unique fixed point.

Remarks:

• If we already start the iteration at the fixed point S∗Ω
(if existing) then we clearly have S∗Ω = τ∗Ω(S∗Ω) but
only if we use always the same set Ω of basic random
numbers, otherwise we would jump out of the fixed
point.

• Since τ∗Ω is not continuous in general, it may happen
that the iteration switches between two values which
lie very close to each other; decreased distance of the
two values for increased sample size n.

• Let s be fixed. It is stated in [8], that the estimator
θ̂∗Ω(s) is negatively biased and that the bias can be
very large in specifically constructed examples. Fur-
thermore there it is stated that θ̂?Ω(s) is consistent if
{h(xt(·)) : t ∈T } is a Glivenko–Cantelli class.

Example: We consider the estimation of the lower proba-
bility of the event D = (−∞,−2]∪ [2,∞) with respect to the
set of normal distributions with mean t ∈T = [−7,7] and

variance σ2 = 4. In this case the function h is the indicator
function of the set D. For importance sampling we always
use normalised weights.

The probability θ is depicted in Figure 1 (left) for each
value t ∈T . The minimum (lower probability) θ∗ is equal
to 0.3173 and is achieved for t∗ = 0. In addition, the estima-
tors θ̂Ω and θ̂

Ω,s(i) , i = 1,2,3, are depicted for n = 1000. In
Figure 1 (right) the exact function ϑ is depicted as contour
plot together with τ∗ for comparison with estimators ϑ̂Ω

and τ∗Ω later on. In Figure 2 we show the contour plots of
ϑ̂Ω for sample sizes n = 1000,10000,100000 and the iter-
ation paths for starting point s(1) = 6. For this example we
can do that because h is very cheap to evaluate. In the first
two cases there is no convergence because we are starting
too far from the unique fixed point. In the third case, for a
large sample size n = 100000, we achieve convergence.

An iteration path for a fixed point iteration is constructed
in the following way: We start at s = s(1), go vertically up
to the function value τ∗Ω(s(1)) (blue function in the figures),
then go horizontally to the diagonal s = t (green line) and
then again vertically up to τ∗Ω(s(2)) and so on.

4. Combining Previous Results of Iteration
to Improve Convergence

Let us look at the left contour plot of ϑ̂Ω in Figure 2. There
we start our iteration with s(1) = 6 and get θ̂

Ω,s(1)=6. This
approximation is quite good near 6 but very bad far from 6
which leads to a completely wrong minimum at −7 and let
us jump to s(2) =−7. Then, we have the opposite problem
with θ̂

Ω,s(1)=−7 which leads to a wrong minimum at 7 and
starts circling around. The idea is now to take into account
that ϑ is constant in s and that we have already a good

187



IMPROVING THE CONVERGENCE OF ITERATIVE IMPORTANCE SAMPLING

Figure 2: Contour plots of ϑ̂Ω(s, t) = θ̂Ω,s(t) and depiction of τ∗Ω(s) = argmint∈T θ̂Ω,s(t) (blue line) for three different
sample sizes n = 1000, 10000, and 100000. The path of the iteration with starting value s(1) = 6 is plotted as a
red line. We have divergence (circling) in the first two cases, due to bad approximation in regions where t is far
from s. For the large sample size n = 100000 we have convergence.

approximation around 6 in the previous step. That means
we have to combine both θ̂

Ω,s(1)=6 and θ̂
Ω,s(2)=−7 and to

update τ∗Ω to continue the iteration:

s(k+1) = τ
(k)
∗Ω
(
s(k),s(k−1), . . . ,s(1)

)
, k = 1,2, . . . (19)

We define this new iteration operator in the following way:

τ
(k)
∗Ω
(
s(k),s(k−1), . . . ,s(1)

)
= argmin

t∈T

k

∑
i=1

ϕ
(k)
s(i)

(t) · θ̂
Ω,s(i)(t)

(20)
where a convex sum with the previous estimators is used.

The weighting functions ϕ
(k)
s(i)

should have the following
properties:

• Normalisation: ∑
k
i=1 ϕ

(k)
s(i)

(t) = 1 for all t ∈T .

• High weights ϕ
(k)
s(i)

(t) around s(i) where we have a good

approximation and low weights ϕ
(k)
s(i)

(t) far from s(i).

We will develop three different methods to obtain the
weight functions. For some methods it may be easier to
focus on the second property, obtaining weights ϕ̃

(k)
s(i)

and
normalise afterwards:

ϕ
(k)
s(i)

(t) = ϕ̃
(k)
s(i)

(t)/
k

∑
j=1

ϕ̃
(k)
s( j)(t) for all t ∈T . (21)

For visualization purpose we also update the estimator ϑ̂Ω

in the following way:

ϑ̂
(k)
Ω

(s, t) = ϕ
(k)
s (t) · ϑ̂Ω(s, t)+

k−1

∑
i=1

ϕ
(k)
s(i)

(t) · θ̂
Ω,s(i)(t). (22)

In addition, we plot the iteration path in the examples pre-
sented. We note that then clearly the previous steps of the

iteration path not really fit into the contour plots because
they are obtained before we have this new updated infor-
mation.

4.1. Combination Method using Exponential
Functions

Our first approach is to use an exponential function with
the property that ϕ̃

(k)
s(i)

is 1 at t = s(i) and that ϕ̃
(k)
s(i)

> 0 is

smaller the greater the distance from t to s(i) is:

ϕ̃
(k)
s(i)

(t) = e−‖t−s(i)‖2D . (23)

In the formula appears the norm

‖t− s(i)‖2
D = (t− s(i))TD2 (t− s(i)) (24)

with diagonal matrix

D =


d1

d2
. . .

dm

 (25)

to measure the distance between t and s(i). The matrix D
scales the components t j− s(i)j by d j. This we need because
of the different magnitude of the m components of the
parameter vector and for describing what is “near” to s(i).
In the case where

T = [t1, t1]×·· ·× [tm, tm] (26)

one could define
d j =

c
t j− t j

(27)
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with a constant c > 0.

Example continued: For our one-dimensional example
with T = [ t, t̄ ] = [−7,7] we use

D =
30

t̄− t
=

30
14

= 2.14. (28)

In Figure 3(a) the combination θ̂
(2)
Ω,s(2)

of the estimators

θ̂
Ω,s(1) and θ̂

Ω,s(2) is illustrated for the second iteration step

and in Figure 4(a) the combination θ̂
(3)
Ω,s(3)

for the third
iteration step for sample size n = 1000. In Figure 5(a) we
show contour plots ϑ̂

(i)
Ω

, i = 1,2,3, and iteration paths for
the first three iteration steps.

4.2. Combination Method using Effective Sample Size

For our second approach we use the formula [6]

neff,s(t) =
(∑n

k=1 wst(xs(Vk)))
2

∑
n
k=1 wst(xs(Vk))2 (29)

for the effective sample size and define

ϕ̃
(k)
s(i)

(t) =
1
n
·neff,s(i)(t). (30)

The effective sample size is equal to the sample size n
for t = s(i) (standard sampling) and becomes smaller and
smaller for t far from s(i). It is one of the measures for the
efficiency of the importance sampling method.

The advantage is that this approach is very cheap because
the weights in the formula for neff,s(i) are already computed
and that there is no need to think about the values of addi-
tional parameters such as d1, . . . ,dm in the previous method
with the exponential function.

Example continued: In Figures 3(b) and 4(b) the combi-
nations θ̂

(2)
Ω,s(2)

and θ̂
(3)
Ω,s(3)

are illustrated for the second and
third iteration step, respectively. In Figure 5(b) we show
again the contour plots ϑ̂

(i)
Ω

and iteration paths for the first
three iteration steps.

4.3. Piecewise Multilinear Interpolation

Here, the idea is to use shape or basis functions as in the
finite element method. One of the properties of such func-
tions is that they are one at the corresponding node (here
s(i)) and zero at all other nodes (here all s( j) 6= s(i)). This
is what we want to have because ϕ

(k)
s(i)

for corresponding

node s(i) should not be disturbed by other weighting func-
tions at s(i). A further important property is that these basis
functions are zero outside their surrounding elements.

For piecewise linear interpolation in one dimension as-
suming that T = [ t, t ] we have to sort the s(i):

(s(i1), . . . ,s(ik)) = sort(s(1), . . . ,s(k)). (31)

Then the intervals [ t,s(i1)], [s(i1),s(i2)], . . . , [s(ik), t ] are the
elements and the ϕ

(k)

s(i j)
are basis functions corresponding to

nodes s(i j). Here, we can directly define the ϕ
(k)

s(i j)
because

they are already normalised due to the definition of the
basis functions which are given in the following way with
special treatment of the functions associated with s(i1) and
s(ik).

ϕ
(k)
s(i j )

(t) =



t− s(i j−1)

s(i j)− s(i j−1)
t ∈ [s(i j−1),s(i j)], j = 2, . . . ,k,

s(i j+1)− t
s(i j+1)− s(i j)

t ∈ [s(i j),s(i j+1)], j = 1, . . . ,k−1,

1 t ∈ [ t,s(i1)], j = 1,

1 t ∈ [s(ik), t ], j = k,

0 otherwise. (32)

The functions in the two special cases are defined to be 1
from or to the corresponding boundary (t and t).

In higher dimensions, m > 1, it is more difficult. In the
case where the parameter set T is in the form of

T = [t1, t1]×·· ·× [tm, tm] (33)

the MATLAB command delaunayn can be used to get an
m-dimensional triangulation of T with respect the points
s(1), . . . ,s(k) together with all corners c(i) of T . To obtain
ϕ
(k)
s(i)

by means of the MATLAB command gridatan we

have to set the function values v at the points s(1), . . . ,s(k)

and in the corners c( j) of T :

v(s( j)) =

{
1 j = i,
0 otherwise

(34)

and

v(c( j)) =

{
1 c( j) and s(i) are in the same triangle,
0 otherwise.

(35)
This corresponds to the special treatment of the first and
the last s(i j) in the one-dimensional case.

Example continued: The results are depicted in Fig-
ures 3(c), 4(c) and 5(c) in the same way as for the two
other methods presented before.

Summary and Conclusion
We extended the iterative importance sampling algorithm
developed in [9] by new methods to improve the conver-
gence. These methods are using information and results
from previous iteration steps which are available in the al-
gorithm anyway without expensive additional calculations.
This allows us to use two different strategies (increasing
sample coverage presented in [9] and combining estimators
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(a) Combination method: exponential function.

(b) Combination method: effective sample size.

(c) Combination method: piecewise linear interpolation.

Figure 3: We illustrate the combination of θ̂
Ω,s(1) and θ̂

Ω,s(2) for the second iteration step in the iterative importance
sampling algorithm for the following combination methods: (a) exponential function, (b) effective sample size
and (c) piecewise linear interpolation. The functions θ̂Ω (standard sampling), θ̂

Ω,s(1) , θ̂
Ω,s(2) (importance sampling

for iteration steps s(1) = 6 and s(2) =−7) and their combination θ̂
(2)
Ω,s(2)

for the second iteration step are depicted.

In addition, the weight functions ϕ
(k)
s(i)

, i = 1,2, needed for the combination are plotted.
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(a) Combination method: exponential function.

(b) Combination method: effective sample size.

(c) Combination method: piecwise linear interpolation.

Figure 4: We illustrate the combination of θ̂
Ω,s(1) , θ̂

Ω,s(2) and θ̂
Ω,s(3) for the third iteration step in the iterative importance

sampling algorithm for the following combination methods: (a) exponential function, (b) effective sample size
and (c) piecewise linear interpolation. The functions θ̂Ω (standard sampling), θ̂

Ω,s(1) , θ̂
Ω,s(2) , θ̂

Ω,s(3) (importance

sampling for iteration steps s(1) = 6, s(2) =−7 and s(3)) and their combinations θ̂
(3)
Ω,s(3)

for the third iteration step

are depicted. In addition, the weight functions ϕ
(k)
s(i)

, i = 1,2,3, needed for the combination are plotted.
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(a) Combination method: exponential function.

(b) Combination method: effective sample size.

(c) Combination method: piecewise linear interpolation.

Figure 5: Contour plots of ϑ̂
(i)
Ω

and depiction of τ
(i)
∗Ω (blue line) for three iteration steps, i = 1,2,3, for each of the different

combination methods. The path of the iteration with starting value s(1) = 6 is plotted as a red line. We have
convergence in all three cases.
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from previous iteration steps) for improving convergence
in the iterative importance sampling algorithm at the same
time. This is in particular useful if one of the two methods
does not work well.

The approach with the effective sample size is cheap
and convenient to apply and leads to good approximations
already after two iteration steps. After three steps there is
almost no difference between the methods comparing the
new estimators θ̂

(3)
Ω,s(3)

. Comparing the contour plots of ϑ̂
(3)
Ω

we have fast convergence to the exact ϑ , in particular for
the effective sampling size method and for the piecewise
interpolation method.
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