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Abstract
Bayesian methods are growing ever more popular

in chemical kinetics. The reasons for this and general
challenges related to kinetic parameter estimation are
shortly reviewed. Most authors content themselves
with using one single (mostly uniform) prior distribu-
tion. The goal of this paper is to go into some serious
issues this raises. The problems of confusing knowl-
edge and ignorance and of reparametrisation are ex-
amined. The legitimacy of a probabilistic Ockham’s
razor is called into question. A synthetic example in-
volving two reaction models was used to illustrate
how merging the parameter space volume with the
model accuracy into a single number might be unwise.
Robust Bayesian analysis appears to be a simple and
straightforward way to avoid the problems mentioned
throughout this article.
Keywords: Imprecise probability, parameter estima-
tion, Bayes’ factors, Ockham’s razor, Robust Bayesian
analysis, chemical kinetics

1. Introduction
Chemical kinetics is the systematic study of the speed of
chemical reactions Espenson (1995). It encompasses a wide
range of fields such as combustion Fischer and Jiang (2015),
homogeneous catalysis Behr and Neubert (2012), heteroge-
neous catalysis Thomas and Thomas (2014), gas-solid re-
actions Favergeon et al. (2008), and biochemistry Cornish-
Bowden and Cornish-Bowden (2012), to name but a few.
One of its main goals is to predict the concentrations of
chemical species as a function of space and/or time. A re-
action rate can usually be expressed as r = k(T )∏

n
i=1 Cmi

i ,
where Ci is the concentration of the i-th species, mi is the
reaction order with respect to species i and k(T ) is the re-
action rate coefficient. The latter can often be expressed as
a function of the temperature T through the Arrhenius law
according to which k(T ) = AT nexp(− Ea

RT ) with A being the
pre-exponential factor, n the temperature coefficient, Ea
the activation energy, and R = 8.314 kg m2s−2mol−1K−1

the ideal gas constant. It might be necessary to consider
more complex kinetic laws in specific fields such as gas-
solid reactions Favergeon et al. (2017). In the most general
case, there is a complex interaction between physics and
chemistry which results in complicated systems of partial
differential equations which depend on both physical and
chemical unknown parameters. Chemical kinetic studies

are generally designed in such a way as to simplify the
mathematical description as much as possible, so that in
the ideal case it becomes a system of Ordinary Differential
Equations (ODE) with respect to time (e.g. in a homo-
geneous batch reactor Levenspiel (2013) or a shock tube
Davidson and Hanson (2003)) or with respect to one spa-
tial dimension (as in the case of plug flow reactors Pratt
(1979)).

At the beginning, chemical kinetics was a mostly em-
pirical science. Modelling was limited to the estimation
of kinetic parameters under conditions where only one or
two reactions take place, thereby allowing for an analytical
solution of the ODE system Hughes et al. (1936). With the
increase in computational power, software have been devel-
oped to numerically solve the differential equation systems
so that complex situations where hundreds or thousands of
reactions compete with one another can be simulated Lutz
et al. (1988). The systematic use of optimisation methods
to estimate and adjust kinetic parameters is a rather recent
development Fischer and Riedel (2013).

There has also been a growing realisation over the last
decade that having a model which nicely fits measure-
ments cannot be the end of the story. Authors such as Fren-
klach Frenklach (2007b) forcefully showed that there exists
a great number of competing reaction mechanisms with
strongly different parameter values which yet can repro-
duce the experimental data at hand equally well. Reliable
predictions of important quantities (such as the turnover of
an enzymatic reaction or the concentration of a toxic pollu-
tant) can only be achieved if the uncertainty of the model
parameters is correctly taken into account Sheen and Wang
(2011). Like in other scientific fields, the approaches to the
estimation of the parameters and their correlated uncertain-
ties can be broadly divided into two camps, namely the fre-
quentist and the Bayesian one, which are often (somewhat
misleadingly) referred to as "determinist" and "stochastic"
in the chemical kinetic community Braman et al. (2012b)

The aim of the present paper is to explain why the use
of precise Bayesian methods can be very problematic in
situations where only few data are available as they can
blur the distinction between knowledge and ignorance and
how robust Bayesian analysis can help practionners avoid
these difficulties. It is organised as follows. In Section
2, the different approaches are presented in the context
of chemical kinetics. In Section 3, it is argued that one
of the main differences between frequentism and precise
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Bayesianism is the presence of an Ockham factor within the
Bayes factor. In Section 4, a synthetic concentration profile
was used to discriminate between two reaction models and
to illustrate how a naive reliance on a single (uniform)
prior can lead to misleading results. The conclusion and an
outlook are given in Section 5.

2. Frequentist, Precise and Imprecise
Bayesian Approaches

Frequentism is the view that probabilities can only be mean-
ingfully assigned to potentially repeatable events Mayo and
Cox (2006). In parameter estimation problems in chemi-
cal kinetics, the (most widely used) frequentist approach
consists of estimating the feasible set of parameter val-
ues k (from a model M) which are compatible with the n
available experimental data e given their uncertainty and
random fluctuations Russi et al. (2008); Frenklach (2007a);
You et al. (2011). If we suppose that e is the realisation
of the random variable vector X , for a given confidence
coefficient α , the feasible set is given by

F={k | p(|Xi(mi(k))−mi(k)|≥|ei−mi(k)|)≥α, i∈[|1;n|]}

To put it in modern English, this means that the observed
discrepancies between model and experiment must be small
enough to be accounted for by the natural fluctuations of Xi
around its expected value E(Xi) = mi(k). Most of the time,
we suppose that the residuals follow a normal distribution
(i.e. Xi−E(Xi) ∼ N(0,σi)) and are independent on one
another. This naturally leads to the following definition

Fε = {k | |mi(k)− ei| ≤ εσi}, i ∈ [|1;n|]

with σi being the standard deviation of the i-th mea-
surement. While such a feasible set may not have good
frequentist properties, it is popular among chemical kineti-
cists because it ensures that the model is compatible with
each experimental target You et al. (2011). An example
of a feasible set involving three reaction coefficients of a
mechanism describing the combustion of methane CH4
Smith et al. (Website, last access on 11.11.2014) can be
seen in Figure 1. The possible values of the parameters are
constrained by two experimental data sets the model has
to match. As the number of experimental data increases,
the feasible set becomes smaller and smaller. This, in turn,
also narrows down the range of predictions of important
quantities, such as heat production or the concentration of
a pollutant Russi et al. (2010).

The likelihood of the measurements given one set
of parameter values is usually computed under the
(often implicit) assumption that the errors are normally
distributed Turányi et al. (2012); Sheen and Wang (2011).
It is worth noting, however, that this remains a hypothesis

Figure 1: Example of feasible set

that is very seldom put to the test, as the experiment is
generally only repeated one or two times (if at all), which
is clearly not enough to validate it Cvetanovic et al. (1979).
This is very unfortunate, as the errors stemming from not
representing correctly the experimental fluctuations can
have a deep impact on the parameter uncertainty Braman
et al. (2012a). What is more, they can accumulate and
strongly distort the results of the parameter estimation
when hundreds of reactions and thousands of experiments
are considered.

According to Bayesianism , both the measurements and
the parameter values can be characterised through proba-
bility distributions Talbott (2005). Based on initial prob-
abilities (the so-called priors), posterior probabilities are
computed by using Bayes theorem upon seeing new data.
In the case of continuous variables, the relationship is given
by

f (k | e) = L(e | k) f0(k)∫
k∈K

L(e | k′) f0(k′)dk′

where f0(k) is the prior probability density, f (k|e) is the
posterior probability density given the measurements and
L(e | k) is the likelihood. For example, the posterior prob-
ability distribution of the chemical kinetic parameters of
the reaction C12H26 +

25
2 O2→ 12CO+13H2O are shown

in Figure 2. If two models M1 and M2 must be compared,
the Bayes factor Goodman (1999) is usually employed for
finding the best one. It is defined as the ratio of the total
likelihoods

B =
P(e|M2)

P(e|M1)
=

∫
L(e|k2,M2) f2,0(k2|M2)dk2∫
L(e|k1,M1) f1,0(k1|M1)dk1

In the field of chemical kinetics, the Bayesian approach
has been applied to problems as diverse as the synthesis



Figure 2: Posterior predictive marginal and joint distribu-
tions of Arrhenius rate parameters

of pharmaceutical products Overstall et al. (2018), atmo-
spheric reactions Miki et al. (2012), combustion in a shock
tube Long et al. (2014), and soot formation Josephson
et al. (2017), to name but a few. Somewhat surprisingly,
most authors Plessis (2013); Urzay et al. (2012); Niemi
and Wheeler (2011); Henderson et al. (2012); Holtzer
et al. (2001); Josephson et al. (2017); Miki et al. (2011,
2012, 2013, 2015); Mosbach et al. (2012, 2014); Najm
et al. (2009); Panesi et al. (2011); Prager et al. (2013);
Sargsyan et al. (2009); Sondak et al. (2017); Wang and
Sheen (2015) do not explain why one should use Bayesian
methods instead of frequentist ones in chemical kinetics.
Several authors mention the higher simplicity, intuitiveness
and appealing nature of the Bayesian approach Overstall
et al. (2018); Verheijen (2003). According to Sargsyan et
al. Sargsyan et al. (2018), frequentism is only concerned
with parameter values and ignores possible mistakes in
the model assumptions. Rodionova et al. pointed out that
Bayesianism readily allows researchers to divide a com-
plex problem into a series of simpler ones Rodionova and
Pomerantsev (2004). According to Bell et al. Bell et al.
(2018), unlike frequentist methods which do not go beyond
delivering a best fit with error bars, Bayesian methods de-
termine the set of all parameter values compatible with
the data. This argument is questionable, though, as there
are frequentist methods (such as the feasible set approach)
that have been precisely developed in order to deal with
these problems in chemical kinetics Frenklach (2007a);
Russi et al. (2008); You et al. (2011). Several authors Bra-
man et al. (2013); Duque-Bernal et al. (2013); Hakim et al.

(2018) have emphasised that frequentist methods are prone
to overfitting, i.e. to favouring very complex models with
many parameters which perfectly match the measurements.
By merging relative accuracy and simplicity into one sin-
gle number (the Bayes factor), precise Bayesian methods
avoid this problem. However, as we shall see in Section 3
and 4, this is not necessarily always a strength as this can
lead one to mistake ignorance for knowledge. Other authors
mention the strongest advantage of the Bayesian framework
which is its ability to integrate genuine prior information
into the problem at hand Hsu et al. (2009); McMullen and
Jensen (2011); Verheijen (2003); Janković (2015). For in-
stance, while studying the homogeneous esterification of
acetic acid with isoamyl alcohol, Duque-Bernal et al. used
frequency data about similar esterification reactions found
in the literature to define the prior distribution of the acti-
vation energy of the specific reaction they were studying
Duque-Bernal et al. (2013). Similarly, in their study of the
polymorphic transformation of L-glutamic acid crystals,
Hermanto et al. used preliminary maximum likelihood esti-
mates to inform their prior Hermanto et al. (2008). In such
situations, traditional frequentist methods would have only
considered the lower and upper bound, thereby failing to
exploit important and useful prior information.

In most cases, however, the only information we have
about a kinetic parameter is that it belongs to some inter-
val Frenklach (2007a); Urzay et al. (2012); Braman et al.
(2013); Hsu et al. (2009). The appropriate choice of prior
probabilities in such a situation of complete ignorance ap-
pears to be one of the most problematic aspects of classical
Bayesianism when understood as a universal framework
Talbott (2005), Staley (2014). The principle of indifference
(POI) stipulates, in its most general form, that one should
assign an equal plausibility to each outcome of a situation
if one has no grounds for preferring one of them Norton
(2008). Applied to point probabilities, it naturally leads to
a uniform distribution Norton (2008). This, however, blurs
the fundamental distinction between warranted knowledge
and ignorance. If we know absolutely nothing about a coin,
we cannot assume that the probability of its landing odds
is 0.5 as if we knew through careful measurements that it
is perfectly poised Walley (2000); Salmon (1967). What
is more, let us suppose that the only thing we know about
a pre-exponential factor A in chemical kinetics is that it
belongs to the interval [1010;1016]. A straightforward appli-
cation of the principle of indifference leads to p1 = p(A ∈
[1012;1014]) = (1014−1012)/(1016−1010) = 0.0099. Now,
if we are completely ignorant about A, we are also ignorant
about log10(A). However applying the principle of indif-
ference to it leads to p2 = p(log10(A) ∈ [12;14]) = p(A ∈
[1012;1014])= (14−12)/(16−10) = 0.33333 = 33.67p1.
The consideration of other reparametrisations can lead to
an endless number of such paradoxes Norton (2008). Ac-
cording to Norton Norton (2008), this demonstrates the



fact that a state of complete ignorance cannot be repre-
sented through a single probability distribution. This issue
has led Jeffreys to develop a prior which is insensitive to
the parametrisation of the problem Jeffreys (1946). While
Jeffreys’ prior avoids the charge of arbitrariness, it cannot
be considered a genuine representation of ignorance as it
(often strongly) favours some parameter values over others
Norton (2008); Kass and Wasserman (1996). The impossi-
bility of representing a state of complete ignorance through
a single probability distribution is thus one of the main
shortcomings of precise Bayesianism. This is where impre-
cise probability (forming the basis of robust Bayesianism)
can be fruitfully employed Berger (1990). The probability
of an event (such as that of a coin landing odds) is no longer
always represented by a single value but by a probability
interval (which would be [0;1] in the case of complete ig-
norance) Walley (2000). The prior uncertainty about the
values of a parameter is no longer described through a sin-
gle distribution but through a family of distributions which
must be large enough to represent ignorance Hall (2006).
The difference between the posteriors corresponds to the
imprecision which can be reduced by increasing the size of
the experimental data set.

Whilst robust Bayesian methods are now considered
a respectable approach in statistics Berger et al. (1994);
Radanovic and Faltings (2013), they are very rarely used in
chemical kinetic studies, although a few authors are aware
of the fact that the posterior can be very sensitive to the
prior Braman et al. (2013); Galagali (2016). Instead, almost
all chemical kineticists rely on a single prior which is most
often uniform Plessis (2013); Urzay et al. (2012); Bell et al.
(2018); Braman et al. (2012b); Hakim et al. (2018); Hsu
et al. (2009); Josephson et al. (2017); Miki et al. (2011,
2012, 2013, 2015); Panesi et al. (2011); Najm et al. (2009);
Prager et al. (2013); Sargsyan et al. (2009). For their study,
Emerson Holtzer et al. used bounded Gaussian priors they
set up arbitrarily Holtzer et al. (2001). Braman et al. sys-
tematically used both a uniform and a normally distributed
prior for their estimation of the chemical kinetic param-
eters of syngas combustion Braman et al. (2013). In that
respect, they have implicitly embraced part of the philoso-
phy of imprecise probability as the total information about
the problem is no longer contained in a single probability
distribution. Nevertheless, a real robust Bayesian analysis
would have necessitated a much greater number of pri-
ors Berger et al. (1994). Likewise, in his work devoted
to the Bayesian inference of chemical reaction networks
Galagali (2016), Galagali recognised that different priors
(uniform, normal, exponential) might be equally justifiable
and reasonable, but he limited himself to three point-mass
mixture priors, which is clearly not enough to determine
the whole influence that the choice of the prior can have
on the posterior. To conclude, we can fairly say that the
large majority of chemical kineticists applying Bayesian

methods to their parameter estimation problems only use a
single uniform prior distribution and that in the few cases
where researchers wonder about the impact of the prior on
the posterior, they only consider one or two other priors.

3. Ockham Factors: A Major Difference
Between Frequentism and Precise
Bayesianism

Let us suppose that we are comparing two models M1 and
M2 which aim at accounting for the same experimental data
E. k1 and k2 are their parameter vectors. The volumes of
their parameter spaces are VM1 and VM2, respectively and
we further assume that their likelihoods are characterised
by two peaks occupying the volumes V pM1 and V pM2,
respectively. The Bayes’ factor B can be expressed as

B =
L(E|M2)

L(E|M1)
=

∫
k2 L(E,k2,M2) f2,0(k2|M2)dk2∫
k1 L(E,k1,M1) f1,0(k1|M2)dk1

B =
Lmax(E|k2)

Lmax(E|k1)

V pM2

V pM1

VM1

VM2
= FQpO

if we apply the principle of indifference to f1,0(k1|M1) and
f2,0(k2|M2). F is the ratio of the maximum likelihoods of
the two models. It is the quantity that often plays the most
important role in frequentist comparisons of models. This
comparison of the maximum likelihoods is the approach
that has been traditionally used by chemical kinetics trying
to discriminate between two competing reaction mecha-
nisms on the basis of experimental data (Hunter and Reiner,
1965; Reilly, 1970), often indirectly through a comparison
of the optimal values of the chi-squared distance (Wagner
et al., 2016) and sometimes more incorrectly of the least-
squared distance (Tan et al., 1988). The main difference
between the precise Bayesian approach and the frequen-
tist approach consists of the Ockham factor O = (VM2

VM1
)−1.

Following the philosophical principle of Ockham’s razor,
it penalises the model that is the most complex, whereby
complexity is defined as the total volume of the parameter
space. This reasoning can be found in an article written
by Braman et al. about the quantification of uncertainty in
syngas chemistry models Braman et al. (2012a). Strongly
relying on the work of objective Bayesian physicist E.T.
Jaynes Jaynes and Bretthorst (2003), the authors consid-
ered that a uniform prior is an appropriate representation
of ignorance (even though they recognise that the posterior
can be very sensitive to the choice of the prior) and that
this entails Ockham’s razor.

However, if the principle of indifference is not correct,
that demonstration is invalid.

It is trivial to see how O is highly dependent upon the
parameter representation. Let us consider, for example, that
p1 ∈ [1;1E +10] and p2 ∈ [1;1E +100] while F = Qp = 1.
If we directly apply the principle of indifference, we find



that Op ≈ 1E−90, which would mean that we know with
almost absolute certainty that M1 is false. If, however, we
apply the POI to log10(p1) and log10(p2), we find that
Oln(p) ≈ 0.091. And if we apply the POI to p−1

1 and p−1
2 ,

we find that Op−1 ≈ 1. It is important to keep in mind that
if we are totally ignorant about the distribution of the val-
ues of pi, we should logically be equally ignorant about
the values of log10(pi) and pi

−1. According to Wolpert
Wolpert (1995), this Bayesian demonstration of Ockham’s
razor fails because O depends on the choice of the variable.
The only way to make the ratio of the posteriors indepen-
dent on the parametrisation would be to always select the
following prior probabilities for the models: p(M1) =VM1
and p(M2) =VM2, which would effectively shave away the
razor.

4. How Not to Mix Ignorance and
Knowledge

To see how this problem can negatively affect the work of
chemical kineticists, a synthetic experimental data set was
used to discriminate between two models. Let us consider
an experimental profile that we want to simulate with two
models M1 and M2. The standard deviation of any measure-
ment ei is given by σi = 0.065ei. Let us further assume that
there are only two reaction models which could account for
the data

• M1 : An isomerisation towards product P1:

R→ P1

d[R]
dt

=−k1[R]

• M2 : A recombination towards product P2:

R+R→ P2

d[R]
dt

=−2k2[R]2

and that products P1 and P2 cannot be detected. In each
case, the ordinary differential equation given above must
be solved, given the initial condition [R]0 = 1200 mol/
m3. Since it involves the rate coefficient ki, the computed
temporal evolution of R (and thus the likelihood as well)
are also bound to depend on it.

For theoretical and empirical reasons, we know the lower
and upper bound of each kinetic coefficient while lacking
any information about the distribution of the possible val-
ues. While an analogy with other reactions allows us to set
narrow bounds for k1 (k1 ∈ [2;2E +3])s−1, the uncertainty
concerning k2 is far larger in that k2 ∈ [5E +04;5E +09]
mol.cm−3.s−1. We want to determine whether or not the
data allow us to identify which of the two models is the
most plausible.
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4.1. Frequentist Approach

The optimal curves obtained via the maximum likelihood
method are contrasted with the measurements in Figure
3. The likelihood function of M1 and M2 can be seen in
Figure 4 and 5, respectively.

For ε = 2 and Fε = {k | |mi(k)−ei| ≤ εσi}, i ∈ [|1;n|],
the feasible set approach leads one to discard M1 as its
feasible set is empty. The feasible set of M2 is given by k2 ∈
[8.51E+05;1.22E+06] mol.cm−3.s−1. The ratio between
the maximum likelihood of M2 and M1 is F = 322.91.
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4.2. Precise Bayesian Approach

Applying the principle of indifference directly to k1 and k2
leads to the following uniform priors: P(k1|M1) = 1/(23−
2) = 0.00050 and P(k2|M2) = 1/(59− 54) = 2−10. After
having computed the likelihood function, we can compute
the Bayes factor B (see Section 3).

We find that Bk = 0.312, which means that we ought
to privilege M1 over M2, even though the predictions of
M1 are farther from the measurements, and crucially, even
though M1 (unlike M2) fails to reproduce the shape of
the experimental profile. This is an example of Lindley’s
paradox where frequentist and Bayesian methods lead to
conflicting results Robert (2014). This is caused by the
fact that the knowledge consisting of the experimental data
(which boils down to aleatory uncertainty) was illegiti-
mately mixed up with our ignorance over the parameter val-
ues (epistemic uncertainty). Several authors have pointed
out that while aleatory uncertainty can often be represented
through a single probability distribution (provided there is
enough data), epistemic ignorance cannot be treated in this
manner He et al. (2015); Abdallah et al. (2013); Bae et al.
(2004); Mathon et al. (2010).

4.3. Robust Bayesian Approach

It is precisely in such ambiguous situations that imprecise
probabilities can prove extremely fruitful Walley (2000). In-
stead of only considering a single prior probability density,
we will now consider six of them, namely fk, fx, fl , fy, fz,
and fw. They were obtained by reparametrising the problem
and attributing a flat prior to the new parameter, following
the same logics as in Sections 2 and 3. These new vari-
ables are such that x = 1/k, l = log10(k), y = 1/log10(k),
z = k0.25, and w = k2. Of course, more sophisticated priors
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can be used or built up in the framework of robust Bayesian
analysis Ferson et al. (2015); Berger et al. (1994). The main
advantage of the priors defined in this section is that they
are all uniform with respect to one variable and are equally
justifiable, if we adopt a precise Bayesian framework 1, in
that being totally ignorant about the values of k logically
entails being also totally ignorant about the values of x, l,
y, z, and w Norton (2008). The priors for M1 and M2 can
be seen in Figure 6 and 7, respectively. The Bayes factor
was recomputed along with the Ockham factor. The results
can be seen in Table 1. It is striking that the values of the
Bayes’ factor are strongly dependent on the prior. This is

1. From an imprecise Bayesian standpoint, none of the priors alone can
represent ignorance. Only all priors taken together are an adequate
representation of our lack of knowledge.



Variable O B
k 4.00E-07 3.12E-01

x = 1/k 2.50E+04 1.67E+04
l = log10(k) 6.00E-01 3.29E+02

y = 1/log10(k) 2.75E+01 3.74E+03
z = k0.25 2.19E-02 7.08E+01
w = k2 1.60E-13 1.98E-04

Table 1: Dependency of O and B on the prior

due to the Ockham factor O that heavily penalises M2 in
the case of k and w = k2 whereas it favours it in the case
of x = 1/k and y = 1/log10(k). Interestingly, l = log10(k)
leads to the value of Bl = 3.29E + 02 that is the closest
to the maximum likelihood ratio F = 322.91, which is a
purely experimental quantity (if we know the physical dis-
tribution of the measurement uncertainty). Nevertheless,
there is no reason to suppose that priors based on log10(k)
will always have that desirable quality.

4.4. Discussion

The simplicity of this example allows one to rapidly visu-
alise, analyse and understand the nature of the problem.
The consequences of mixing knowledge and ignorance are,
however, often not so easy to recognise (see Norton (2010);
Benetreau-Dupin (2015)). Clearly, an experienced Bayesian
statistician would not commit the fallacy described in 4.2.
Nevertheless, as we saw in Section 2, most chemical kineti-
cists who resort to Bayesian methods only use one single
uniform prior Plessis (2013); Urzay et al. (2012); Bell et al.
(2018); Braman et al. (2012b); Hakim et al. (2018); Hsu
et al. (2009); Josephson et al. (2017); Miki et al. (2011,
2012, 2013, 2015); Panesi et al. (2011); Najm et al. (2009);
Prager et al. (2013); Sargsyan et al. (2009), and some of
them even state that this is the only logical choice if every-
thing we know about a parameter is its lower and upper
bound Hsu et al. (2009). Prior sensitivity analyses are very
rare and limited to the use of one or two additional priors
Galagali (2016); Braman et al. (2012b). As such, it is un-
clear whether the results in all these works only reflect the
experimental data or both the data and the prior.

In their work about the reaction pathways underlying the
electrochemical reduction of nitrate on tin, Katsounaros et
al. described the Bayes factor as the pure impact of the data
on the model relative plausibility Katsounaros et al. (2012),
like many other authors in the general field of parameter
estimation Alatri (1999); Rouder et al. (2018); Morey and
Rouder (2011). In the presence of a prior distribution based
on empirical information, Bayes factors can indeed be a
very useful tool to discriminate between models which is
far superior to the traditional p-value tests Goodman (1999).
However, in the case of the two reaction models we just
considered here (see Fig. 3), it is clearly wrong to say that

it is the data themselves which disfavour M2 (Bk = 0.312).
It would, on the contrary, be more appropriate to say that
our decision to try to represent our ignorance through a
flat prior on k smothered the experimental information at
our disposal. In their work on the Bayesian analysis of
syngas chemistry models, Braman et al. mentioned and
emphasised the danger of overfitting highly complex mod-
els and argued that the closeness of an optimised model
to all measurements cannot be the sole arbiter of its worth
and truth Braman et al. (2013). They went on to praise
the ability of precise Bayesianism to deliver us a single
number combining the lack of complexity of a model and
its ability to reproduce experimental data. However, the
inability of precise Bayesianism to represent true ignorance
might appear to be too high a price to pay for that Salmon
(1967).

Even if we do not equate ignorance with uniform prob-
ability, there are other reasons to strongly favour simple
models over complex ones. Kelly argued that systemati-
cally choosing the simpler of two equally accurate models
maximises our convergence rate to the true model, regard-
less of whether it is simple or complex Kelly (2007). While
overfitting complicated chemical models should always be
avoided, the simplicity of a model is not necessarily related
to its plausibility Sober (2015).

5. Conclusion and Outlook

Chemical kinetics determines many processes and phenom-
ena that play a crucial role in the modern world, such as the
combustion of fossil and renewable fuels Fischer and Jiang
(2014), catalytic reforming Dou et al. (2010), the reduction
of pollutant emissions from car and truck engines Kandylas
et al. (1999), the growth of multicellular cancer Bajzer et al.
(1997), the depletion of ozone in the stratosphere Solomon
et al. (1986), and other atmospheric reactions influencing
global warming Sulbaek Andersen et al. (2011). As a con-
sequence, a good knowledge of chemical kinetic parameter
uncertainty might prove crucial to face the challenges of
the modern world.

Over the last decades, an increasing number of authors
have applied both frequentist and Bayesian methods to
chemical kinetic parameter estimation (including optimal
design) Frenklach et al. (2004); Wang and Sheen (2015).
The main advantage of the Bayesian approach is its ability
to take into account genuine prior information (such as a
frequency distribution of the rate coefficients of reactions
of a certain type) and to provide decision makers with quan-
tities that are intuitively much more appealing than their
frequentist counterparts (compare, for instance, the frequen-
tist and Bayesian notion of confidence interval). However,
in situations where prior experimental knowledge is limited
or non-existent, the problem cannot be described through a
single prior probability distribution. Bayesian robust analy-



sis, the systematic study of the influence of the choice of the
prior on the posterior variables of interest, has been applied
to a large number of topics such as climatology Tomassini
et al. (2007), the monitoring of clinical trials Greenhouse
and Waserman (1995), pipeline failure Cagno et al. (2000),
and accident proneness Insua et al. (1999), to name but a
few. However, the large majority of chemical kineticists
resorting to Bayesian methods only use one single (mostly
uniform) prior distribution. In Section 2 and 3, it was shown
that in the absence of prior information, relying on a single
uniform prior blurs the distinction between knowledge and
ignorance. A simple example of chemical kinetics involv-
ing the comparison of two reactions to account for the same
experimental profile was drawn upon to illustrate how the
complexity of a model (i.e. the volume of its parameter
space) and its accuracy (i.e. the closeness of its predictions
to the measurements) are two irreducible quantities that
were artificially merged into a single number because of
the use of a uniform prior. There are many other ways in
which the posterior might be strongly influenced by the
choice of the prior. When considering the probability that
an explosion might occur or that a toxic chemical might
be formed, it is vital to make sure it is the experimental
data that are speaking and not the prior. The purpose of this
article was to draw attention to this fact and to encourage
chemical kineticists employing Bayesian methods to sys-
tematically determine the sensitivity of their results to the
prior.

An important question needs now to be addressed. It
is well known that the influence of the prior is bound to
decrease as the number of experimental data rises. This
is commonly referred to as washing out the priors Nola
and Irzik (2005). Is it not reasonable to expect that, from a
given number of measurements, the choice of the prior will
no longer matter anyway? If every new measured variable
were equally sensitive to every reaction, this is something
we could feel relatively confident about. Unfortunately,
we know that this is rarely the case in chemical kinetics.
For instance, if we consider the combustion of methane
CH4, carbon monoxide CO and hydrogen H2, the reaction
H+O2→ OH+O will almost always play a very signif-
icant role whereas the reaction HO2 +CO→ OH+CO2
can be neglected for most macroscopic experimental tar-
gets such as ignition delay times and laminar flame speeds
involving either CH4 or CO as fuel Peters and Rogg (1993)
so that only few experimental data will constrain its values.
And yet, it can play an important role in the combustion of
bio-syngas (CO−CO2−CH4−H2 mixtures) at high pres-
sures and middle temperatures Fischer and Jiang (2014)
so that accurate values of its kinetic parameters would be
required for, say, minimising the formation of pollutants
in a combustor under these conditions. As a consequence,
even in cases where we have a lot of measurements at our
disposal, the choice of the prior will still have a strong

influence on the parameters most measured variables are
not sensitive to so that it cannot be "washed away" easily. A
systematic application of robust Bayesian analysis to chem-
ical kinetic problems appears thus to be always advisable.
There is also a need for chemical kinetic studies where both
frequentist and Bayesian methods are applied to the same
problem in order to see the practical differences caused by
the choice of the fundamental framework. To the best of
the author’s knowledge, no such work can be found in the
literature about chemical kinetics.

The results of such studies would give us important in-
sights into how to optimally represent the uncertainty of
chemical kinetic parameters in a way that would make them
safer for decision makers to rely on.
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