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Abstract
I propose a novel approach to simultaneous inference
that alleviates the need to specify a correlational struc-
ture among marginal errors. The vacuous orientation
assumption retains what the normal i.i.d. assumption
implies about the distribution of error configuration,
but relaxes the implication that the error orientation is
isotropic. When a large number of highly dependent
hypotheses are tested simultaneously, the proposed
model produces calibrated posterior inference by lever-
aging the logical relationship among them. This stands
in contrast to the conservative performance of the Bon-
ferroni correction, even if neither approaches makes
assumptions about error dependence. The proposed
model employs the Dempster-Shafer Extended Calcu-
lus of Probability, and delivers posterior inference in
the form of stochastic three-valued logic.
Keywords: Dempster-Shafer theory; belief function;
Bonferroni correction; familywise error rate; cali-
brated inference

1. Introduction

In scientific explorations, the analyst often needs to ver-
ify more than one hypothesis based on data from a single
experiment. The multiplicity of hypotheses posits a threat
to the trustworthiness of the overall conclusion. The infer-
ential procedure employed, even if statistically valid for
verifying single hypotheses, may no longer retain validity if
not carefully compounded across hypotheses. The correct
compounding of statistical procedures relies on adequate
knowledge about the dependence relationship between the
observed data as well as the hypotheses, neither of which
is likely available to the analyst.

For concreteness, let M= (M1, . . . ,Mk) be a vector of un-
known parameters, and Y = (Y1, . . . ,Yk) a vector of observ-
able data that aims to measure M. Suppose for i = 1, . . . ,k,

Yi ∼ N
(
Mi, S2) . (1)

That is, each Mi is measured exactly once by Yi, with a
normally distributed measurement error of variance S2.
Suppose for now that S2 is known. The goal is to make
inference about the uncertain values of M without addi-
tional prior information.

It seems intuitive that for an individual Mi, a best guess
at its value is Yi, accompanied by a confidence statement as

an interval centered at Yi with width proportional to S. This
follows from the sampling model in (1). However, to make
confidence statements about M, (1) alone is not enough.
Missing from the specification is a dependence structure
among the observations given their unknown true means.

The scenario described here is an abstraction of a typical
scientific experiment. A total of k unknown quantities are
learned at the same time, and each Yi is a summary statistic.
As part of the inferential procedure, the marginal reference
distributions of the Yi’s are usually well-understood. How-
ever, information regarding their interdependence is much
harder to come by. Often out of convenience, or perhaps a
lack of better alternative, it is assumed that

Yi ⊥⊥ Yj |M ∀i 6= j, (2)

hence Y is multivariate normal with mean M and covari-
ance proportional to the identity matrix. We refer to (1) and
(2) as the sampling model under the normal i.i.d. (or just
i.i.d.) assumption. Figure 1 is an illustration of it for k = 2.

For problems of higher dimensions, computation can
be vastly simplified if some form of independence can be
assumed. Within the context of multiple hypothesis test-
ing, a most widely adopted procedure to control the false
discovery rate is the Benjamini-Hochberg procedure [1],
which is valid under the assumption of independence or
mild positive dependence [2]. However, independence (or
for that matter, any known structure of dependence) among
hypotheses is all but likely to hold. In particular, indepen-
dence is easily violated when the parameters of interest and
the summary statistics are devised sequentially according
to previous observations and verification results. Such a
trajectory is nevertheless a typical one in scientific explo-
rations.

Things become more complicated when an even larger
collection of hypotheses involving M, highly collinear
among themselves, are to be verified together. For example,
one can test whether all pairwise contrasts are equal to zero:
Mi = M j, which makes a total of k(k−1)/2 comparisons
involving only k unknown quantities. This case is investi-
gated in Example 3 in Section 3. Once the data is observed,
one is always guaranteed to find some function g about the
parameter, however obscure and scientifically insignificant
it may be, such that the observed data produces strikingly
strong support for the statement g(M) = 0. This illegiti-
mate maneuver is called “data-snooping”, and it invalidates
the nominal significance level claimed by the test. Post-hoc
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analyses aim to avoid it by controlling for the familywise
error rate, that is, the probability of making at most one
false rejection among a family of hypothesis tests when the
nulls are all true.

A classic procedure to control for the familywise error
rate is the Bonferroni correction [9]. If p hypotheses are
tested together, the required significance level for each
individual test is reduced to α/p, such that the familywise
error rate is no more than α . Notably, the validity of the
Bonferroni correction does not rely on an independence
assumption about the hypotheses. However, it does not
take into consideration the logical structure behind the
hypotheses, contributing to its well-known conservative
behavior. More discussions and comparisons involving the
Bonferroni procedure can be found in Section 3.3.

From an estimation point of view, the model in (1) poses
challenges to both the likelihood and Bayesian approaches.
Since each Mi is measured exactly once, no large sample
asymptotic approximation to the likelihood is appropriate,
even when the variance parameter S2 is known. In order to
obtain a distributional description of M, one must resort
to Bayesian methods and assume a prior for the parameter
vector M. Again due to the small sample size, any prior
will exude significant influence over the posterior for M,
which is undesirable unless a certain shrinkage effect is
intentionally sought for. If S2 is not known a priori, the
maximum likelihood estimate for S2 does not exist, whereas
Bayesian methods need a prior for S2 that cannot be updated
based on the data. Challenges regarding unknown S2 is
addressed in Section 4. Lastly, if the dependence structure
of Y is not precisely available, both likelihood and Bayesian
methods will fail to prescribe a variance quantification in
their respective inference for M.

Contribution of This Paper This paper discusses a
novel approach to simultaneous inference that alleviates the
need to specify a correlational structure among the marginal
errors. In place of the i.i.d. assumption, the proposed ap-
proach invokes the assumption of vacuous orientation, a
mathematically weaker assumption that delivers logically
stronger conclusions. The vacuous orientation assumption
retains what the i.i.d. assumption implies on the configu-
ration of the measurement errors, i.e. their sum of squares
follows a χ2

k distribution. On the other hand, it relaxes the
implication that the error orientation is isotropic in RK .

The proposed model employs the Dempster-Shafer Ex-
tended Calculus of Probability (DS-ECP) [7, 8], a logical
framework for probabilistic reasoning. DS-ECP dictates
the specification, combination and processing of marginal
information, including observed data, model structure, as
well as available (but optional) prior distributional infor-
mation. The model delivers posterior inference in the form
of a probability triple (p,q, r) that sums to one, represent-
ing evidence “for”, “against”, and “don’t know” towards
a hypothesis one wishes to ascertain. As a generalization

Figure 1: The normal i.i.d. sampling model of Y given M
when k = 2. The i.i.d. assumption implies that
1) the sum of squares (configuration) of mea-
surement errors is distributed χ2

2 , and 2) their
orientations are isotropic, i.e. uniform in all di-
rections.

to ordinary probability reasoning, DS-ECP is a system of
stochastic three-valued logic. The third value augmentation,
i.e. a possibly nonzero r, provides a flexible vocabulary to
express partial information, including the complete lack of
information. An advantage of DS-ECP over the Bayesian
approach is that does not require the modeler to possess a
priori distributional knowledge about unknown parameters,
while at the same time enjoying the logical coherence as
does the Bayesian approach.

The DS-ECP analysis framework is a marriage between
belief function, an imprecise probability construction, and a
functional approach to statistical inference. The model spec-
ification in DS-ECP bears resemblance to structural [10]
and functional models [4], as well as the modern approach
of generalized fiducial inference [11]. Other statistical ap-
proaches that leverage non-additive probability measures
include robust Bayes [3], inferential models (IM) [14], and
outer probability measures [12]. Notably, the concept of
validity emphasized by the IM approach in the sense of
frequentist coverage is echoed in the analysis of calibration
properties in Section 3.3 of this paper.

The remainder of this paper is organized as follows. Sec-
tion 2 lays out the set of weakened assumptions underlying
the proposed approach, and demonstrate the combination
and projection operations following the inferential recipe of
DS-ECP, including a small example to illustrate the recipe
itself. Section 3 discusses posterior inference for important
types of hypotheses, including linear and quadratic forms,
their relationships to hypothesis testing and confidence re-
gions, as well as frequentist coverage properties. In the



presence of an exploding number of dependent hypothe-
ses, the posterior probabilities from the vacuous orientation
model is uniformly distributed, just as a well-calibrated
p-value under the null sampling model. In contrast, the
Bonferroni approach, which boasts no assumption on the
dependence structure of hypotheses, behaves unnecessarily
conservatively. Section 4 discusses the case in which the
error variance S2 is not known but follows a prior distri-
bution. Section 5 discusses potential generalizations to the
proposed model.

2. Model
The proposed model is based on the following state space
structure, consisting of1(

Y,M,E,S2) ∈Ω, (3)

where Ω = ΩY×ΩM×ΩE×ΩS2 =R3k+1. Y is a k-vector
of observable measurements, and M the corresponding
vector of unknown parameters whose values we wish to
learn. E is a vector of measurement errors and S2 a variance
parameter associated with them, both to be defined soon.

2.1. Marginal Evidence

A piece of marginal evidence is a mathematical statement
regarding subsets of the state space. Observations, together
with modeling assumptions, make up the marginal evidence
available for analysis. In DS-ECP models, the word margin
may carry a more general meaning than it does in ordinary
statistical models, without being confined to individual
dimensions of the state space. A margin can be subsets,
as well as (single- or multi-valued) functions of subsets of
the state space. This generalization gives the freedom to
specify evidence on higher order structures.

The first piece of marginal evidence we specify is the
assumption that the true means are observed subject to
additive error. That is,

Y−M = E. (i)

The next piece of marginal evidence concerns the observed
data. That is, the observable measurement Y realizes to a
particular value

Y = y. (ii)

While this may look obvious, we spell it out explicitly in
anticipation of potentially censored or truncated observa-
tions. The third assumption is on the distribution of error
configuration:

E′E = S2U, where U ∼ χ
2
k , (iii)

1. In general, we require the state space Ω be the Cartesian product of
a collection of marginal spaces, and be endowed with the product
topology.

Figure 2: The error configuration assumption (iii) says that
the sum of squares of the error terms follows a
scaled χ2

k distribution. It posits a k-sphere cen-
tered at M with a random radius. Assumption on
the error orientation is vacuous, i.e., no knowl-
edge of location on a given k-spherical shell is
available, contrasting the isotropic orientation
assumption implied by the normal i.i.d. model
illustrated in Figure 1.

the Chi-squared distribution with k degrees of freedom.
Notice that the sum of squares of the measurement errors is
injected with stochastic evidence through the introduction
of the variable U . It is the modeler’s assertion that U be
auxiliary, in the sense that (iii) is the only way through
which the distribution of U injects knowledge into the state
space. Besides through (iii), no further information can be
learned from U about any aspect of the state space.

The error configuration assumption says that the sum of
squares of the measurement errors follows a scaled χ2 dis-
tribution with a scaling factor S2. As alluded to in Section 1,
that the error configuration is distributed as Chi-squared
is a necessary but insufficient consequence of the normal
i.i.d. assumption. To see this insufficiency, consider the
following probability specification for E when the dimen-
sion k ≥ 2: E1 ∼ k−1/2 · sgn(0.5) · χk, where sgn(0.5) is
a random “+/−” sign, and χk is an independent Chi dis-
tribution with k degrees of freedom. Also, Ei = E1 for all
i = 2, · · · ,k. The implied distribution of E asserts that all
Ei’s are fully correlated. This specification is compliant
with the vacuous orientation model, but not with the nor-
mal i.i.d. model. Therefore, to replace the i.i.d. assumption
with (iii) is a proper weakening of model assumptions. Con-
clusions derived from the vacuous orientation model are
logically stronger.



The terminology configuration and orientation are due
to [6], who used them in a regression context. For X a linear
regression design matrix, configuration refers to the matrix
product X′X, whereas orientation refers to the informa-
tion that remains in X given X′X. The vacuous orientation
assumption refers to the fact that only the marginal distribu-
tion of the error configuration is specified, while the error
orientation is left unspecified. With this partial specifica-
tion, the model admits to full ignorance on the correlational
structure of the error terms E. Figure 2 is an illustration of
the error configuration assumption when k = 2.

We will need a last assumption concerning the variance
parameter S2. Consider for now the known variance case:

S2 = s2, (iv)

for s a positive real number. In Sections 2 and 3, we discuss
posterior inference for M based on the known variance
assumption. The unknown variance case is discussed in
Section 4, where we introduce a variant of (iv) that allows
S2 to bear a prior distribution. Reasoning and computation
contingent upon either variants are virtually the same.

2.2. Independence of Marginal Evidence

As a prerequisite for the next steps of DS-ECP analysis, it is
important that the specified collection of marginal evidence
be judged as an independent body of evidence. Indepen-
dence justifies the use of Dempster’s Rule to combine the
marginal information in the joint state space.

To be concrete, let E denote a collection of J pieces
of marginal evidence. E here stands for “Evidence”, to
be distinguished from E the measurement error. For the
model under contemplation, E= {(i),(ii),(iii),(iv)}. Let
U j be the auxiliary variable associated with the jth piece of
evidence in E, which follows a known distribution µ j. For
example, U in (iii) follows the χ2

k distribution. Marginal
pieces of evidence that are deterministic, such as (i), (ii)
and (iv) which are mere equality statements about margins
of the state space, are regarded as associated with constant
auxiliary variables. Evidence independence is defined as
follows.

Definition 1 (Independent marginal evidence.) A body
of marginal evidence E consisting of J pieces is said to be
independent, if the auxiliary variables associated with each
piece are all statistically independent. That is, for U j ∼ µ j
where j = 1, · · · ,J, we have that

(U1, · · · ,UJ)∼ µ1×·· ·×µJ . (4)

Since constant variables are independent of other vari-
ables, all deterministic evidence are naturally independent.
By Definition 1, the body of evidence for the vacuous orien-
tation model E = {(i),(ii),(iii),(iv)} is independent, and
is eligible for the next steps of DS-ECP analysis.

Note that the independence of evidence discussed here
is distinct from the assumption of independence about the
measurement errors. The latter is implied by the normal
i.i.d. assumption, precisely what the proposed model at-
tempts to rid by replacing with the mathematically weaker
assumption of χ2

k error configuration. Contingent upon the
configuration, the errors may or may not be independent.
On the other hand, the independence of evidence assump-
tion claims that the information that the error configuration
behaves in a certain way is independent of other pieces of
information, such as that the errors are additive, the vari-
ance is known, and so on. In other words, independence of
evidence refers to statistical independence of the auxiliary
variables, a separate notion from (in)dependence among
margins of the state space. Independence of evidence is just
as much a subjective judgment on the part of the modeler.
In complex models, through careful specification using a
join tree structure [13], one can successively construct in-
dependent bodies of evidence such that they’re eligible for
DS-ECP analysis using Dempster’s Rule of Combination.

2.3. Evidence Projection and Combination

The processing of marginal evidence consists of three steps:
1) up-projection of marginal evidence to the joint state
space, 2) combination of evidence in the joint state space,
and 3) down-projection of combined evidence to margins
of interest. The three steps are explicated in this section.

2.3.1. UP-PROJECTION OF MARGINAL EVIDENCE

To up-project a piece of marginally specified evidence is
to extend its evidence statement involving only a subset of
the state space variables, into one that concerns the entire
state space. Algebraic relationships defined on margins of
the state space are extended into cylinder sets, spanning
the remainder dimensions that were not mentioned in the
evidence statement. For example, (i) implies the following
partitioning of Ω:

{
(
Y,M,E,S2) ∈Ω : Y−M = E}, (5)

and similarly for statement (iii),

{
(
Y,M,E,S2) ∈Ω : E′E = S2U}. (6)

In other words, the up-projection process levels the play-
ground for all marginal evidence, such that they become
comparable statements concerning the same joint space Ω,
and ready to be combined there.

2.3.2. EVIDENCE COMBINATION VIA DEMPSTER’S
RULE

Since E= {(i),(ii),(iii),(iv)} is judged to be independent,
we apply Dempster’s rule to combine its component pieces,



that is, by taking the intersections of all up-projected ev-
idence whenever they are nonempty. These nonempty in-
tersections become the new focal sets, representing the
combined evidence from E. In this model, the combina-
tion of E implies a class of subsets of Ω of the following
structure

RE
def
== {

(
Y,M,E,S2) ∈Ω :

Y = y, Y−M = E, E′E = S2U, S2 = s2}, (7)

where U ∼ χ2
k . Notice that RE is a multi-valued map [5]

from U to subsets of Ω. Since U bears a known distribution,
RE can be regarded as a random subset of Ω whose distri-
bution is inherited from that of U . The probability density
function of U dictates the mass function of RE.

Upon combining arbitrary body of evidence, the auxil-
iary variable distribution may need to be revised. To be
precise, the domain on which the auxiliary variable is a
priori defined may be reduced, to exclude those values
that result in algebraic incompatibility among pieces of
marginal evidence. These incompatible values are those
that correspond to marginal focal sets that result in empty
intersections with other marginal focal sets. Empty intersec-
tions are eliminated from the combination process, while
the weights of the remainder non-empty intersections renor-
malize to one. The revision of the auxiliary distribution
proceeds as follows.

Denote µ the prior probability of the auxiliary variable
U, associated with a body of evidence E and measurable
with respect to σ (Ξ). Upon combining E, µ is revised to
µE, the posterior probability measurable with respect to
σ (ΞE)⊂ σ (Ξ), where ΞE = {u ∈ Ξ : RE (u) 6= /0}, and

µE =
(
µ×1ΞE

)
/µ (ΞE) , (8)

where the indicator function 1A(S) = 1 if S ⊆ A and 0
otherwise. In case the denominator µ (ΞE) is 0, (8) may
be alternatively defined via regular conditional probabil-
ity or limiting arguments. For the case at hand, it just
so happens that none of the four component evidence of
E = {(i),(ii),(iii),(iv)} raises algebraic conflict for any
given value of the auxiliary variable U . Thus, the revision
of auxiliary distribution is trivial, namely µE = µ which is
still the χ2

k distribution.

2.3.3. DOWN-PROJECTION TO MARGINS OF INTEREST

Rarely is the case that we wish to draw inference about the
entire state space. Often, we are only interested in a par-
ticular margin of the state space, such as M the parameter
of interest. To reduce computational burden, the random
subset RE defined on Ω is projected onto the margin of
interest ΩM. This process is called down-projection. The
projection of RE onto ΩM is

RM|E
def
== {M ∈ΩM : (M−y)′ (M−y) = s2U} (9)

where U ∼ µE, the χ2
k distribution. RM|E is again a random

subset of ΩM whose distribution is dictated by U . For every
realization U = u, RM|E (u) is a k-sphere centered at y with
radius s

√
u. Repeated draws of U following the χ2

k distribu-
tion result in a collection of concentric k-spheres of varying
radii. The random k-sphere RM|E embodies posterior infer-
ence for M. Section 3 discusses posterior inference based
on RM|E, expanding on its properties in greater detail.

2.3.4. PROJECTION AND COMBINATION: AN EXAMPLE

We given an example to illustrate the projection and combi-
nation operations discussed above. Let X = (X1,X2) be two
independent tosses of a same coin, whose chance of landing
as head is θ . Suppose the following Bernoulli experiment
for i = 1,2:

Xi = 1(Ui ≤ θ) , (10)

where the auxiliary variables Ui
iid∼ µi = Unif(0,1). A head

followed by a tail was observed: X1 = 1 and X2 = 0. Gath-
ering the above evidence as E′, we have that

RE′ = {(X,θ ,U) : X = (1,0),Xi = 1(Ui ≤ θ)}, (11)

where the prior auxiliary variable distribution µ = µ1×µ2
is uniform on the unit square. Notice that the data implies
U1 ≤ θ and U2 > θ , hence for any given θ , U2 must be
greater than U1. This restricts the domain of the auxiliary
variable to ΞE′ =

{
u ∈ [0,1]2 : u1 < u2

}
, the northwest tri-

angle of the unit square. It follows from (8) that the revised
auxiliary variable distribution µE′ ∝ 1ΞE′ , uniform over the
northwest triangle of the unit square, which is equivalent
to the probability distribution induced by a pair of Uniform
order statistics. Down-projecting RE′ to the θ margin, we
obtain the random subset that embodies posterior inference
for θ :

Rθ |E′ = {θ ∈ [0,1] : U1 < θ ≤U2}, (12)

where U ∼ µE′ . Rθ |E′ is a half-closed, half-open random
interval on [0,1]. Its left and right end points are marginally
distributed as Beta(1,2) and Beta(2,1) respectively.

3. Posterior inference
Posterior inference about unknown quantities in the state
space are expressed through a probability triple (p,q, r),
representing weights of evidence “for”, “against”, and
“don’t know” about an assertion concerning subsets of the
state space. When RM|E is the down-projected random sub-
set that embodies posterior inference for M, it inherits
randomness from the revised auxiliary variable U ∼ µE.
Define a trio of set functions p, q, r : ΩM→ [0,1] such that
for all H ∈ σ (ΩM),

p(H) =
∫
{u∈ΞE:RM|E(u)⊆H}

dµE, (13)



q(H) =
∫
{u∈ΞE:RM|E(u)⊆Hc}

dµE = p(Hc) , (14)

r (H) = 1−p(H)−q(H) , (15)

with p+q+ r = 1. Note that (p,q, r) are implicit functions
of E, a dependence we suppress for notational simplicity.
The (p,q, r) representation of posterior inference is an al-
ternative to using a pair of belief and plausibility functions
[15]. In particular, p is a belief function on ΩM. 1−q, or
equivalently p+ r, is its conjugate plausibility function.
The three-valued representation has the advantage that it
explicitly acknowledges a possibly non-zero r, the “don’t
know” probability which reflects the extent of structural
uncertainty within the model.

3.1. Linear Forms and Hypothesis Tests

Let C be a real-valued p by k matrix, where p can be
smaller than, the same as, or larger than k. A consistent
system of equations

CM = a (16)

is a linear margin of the parameter space ΩM of dimension
k− rank(C). Inference about linear margins of the parame-
ter space is the most common type of posterior inference,
encompassing a variety types of hypotheses.

We are interested in drawing inference about a linear
margin in the form of (16). Define the summary statistic

ty = (a−Cy)′
(
CC′

)−1
(a−Cy) , (17)

where in case p > rank(C), the inverse is defined as the
Moore-Penrose pseudoinverse. Results below concern pos-
terior inference for one- and two-sided linear forms of M,
expressed in terms of ty.

Theorem 2 (Two-sided linear form) For a two-sided lin-
ear hypothesis H : CM = a, The DS posterior probabilities
concerning H are

{p(H) ,q(H) , r (H)}= {0,F (ty) ,1−F (ty)} (18)

where F is the CDF of the scaled χ2
k distribution with

scaling factor s2.

Proof of Theorem 2 recognizes that ty is the minimum
square radius of k-spheres of the form RM|E to intersect
with the linear subspace CM= a. The probability that RM|E
does not intersect with the linear subspace contributes to
q(H), and the probability that it does contributes to r(H).

Theorem 3 (One-sided linear form) For a one-sided lin-
ear hypothesis H : CM≤ a, The DS posterior probabilities
concerning H are

{p(H) ,q(H) , r (H)}= {F (ty) ,0,1−F (ty)} (19)

if Cy≤ a, and

{p(H) ,q(H) , r (H)}= {0,F (ty) ,1−F (ty)} (20)

otherwise. F is defined as in Theorem 2.

The hypothesis in Theorem 3 is a halfspace formed by
the hyperplane which Theorem 2 posits as hypothesis. De-
pending on y, the location of the center of RM|E, the hy-
pothesized halfspace may or may not contain RM|E with
positive probability. If H is not supported at face value by
empirical evidence, that is, either H is degenerate relative
to ΩM or it asserts to the contrary of what the observation
appears to be (e.g. H : CM≤ a but Cy� a), then p(H), the
probability “for” H, is zero. On the other hand, if H is sup-
ported by empirical evidence, then q(H), or the probability
“against” H, is zero. The probability of “don’t know”, r(H),
is the same as long as H concerns the same linear subspace
in ΩM. This again demonstrates the intuitive appeal of r
as a posterior summary statistic: its value is reflective of
the inherent structural uncertainty regarding the hypothesis
with respect to the collection of evidence. That is, it reflects
the extent to which E is able to discern anything about H
at all, while agnostic to the direction of support for it.

Examples below showcase a variety of hypothesis types
to which the above theorems are applicable. Posterior prob-
abilities are examined in comparison to the frequentist an-
swers under the normal i.i.d. model.

Example 1 (test for all means) Suppose the null hypoth-
esis is H : M = 0, and the alternative Hc : M 6= 0. C is the
identity matrix, and a = 0. The test statistic simplifies to
ty = ∑

k
i=1 y2

i . The posterior probability “for” H is 0, and
posterior probability of “don’t know” about H is

r (H) = Γ
(
k/2,∑y2

i /2s2)/Γ(k/2) , (21)

which is the survival probability (i.e. one minus the cumula-
tive probability) of a χ2

k distribution evaluated at ∑y2
i /s2.

Notice that (21) is identical to the p-value one would
obtain under the i.i.d. sampling model, for which the likeli-
hood ratio test is based on the same test statistic. It has an
exact reference distribution of χ2

k under the null. Example 2
to follow seems like a slight modification from Example 1,
but the solution it supplies can be rather distinct.

Example 2 (test for one mean) Suppose the null hypoth-
esis is H : M1 = 0, and the alternative Hc : M1 6= 0. Here, C
is a column vector of 0’s at all except the first entry, which
takes the value of 1. The test statistic is ty = y2

1. The poste-
rior probability “for” H is 0, and posterior probability of

“don’t know” about H is

r (H) = Γ
(
n/2,y2

1/2s2)/Γ(n/2) , (22)

which is the survival probability of a χ2
k distribution evalu-

ated at y2
1/s2.



Figure 3: Distribution of r(H) for all pairwise contrasts un-
der the null sampling model for various k. As the
dimension k increases, the distribution of r(H)
approaches uniform, which is the distribution of
a correctly calibrated p-value.

When k = 1, Example 2 reduces to Example 1, and (22)
agrees with the p-value obtained under the i.i.d. sampling
model using the likelihood ratio test. However when k > 1,
(22) is larger than the p-value obtained under the i.i.d. sam-
pling model, which utilizes χ2

1 as the reference distribution
for ty regardless of k. Under the vacuous orientation as-
sumption, the reference distribution χ2

k grows with k, and
is more conservative than the i.i.d. model.

Example 3 (test for all pairwise contrasts) Suppose we
conduct a simultaneous test for the null hypothesis that all
pairwise means are identical. That is,

H = ∩1≤i< j≤kHi, j, Hi, j : Mi = M j

The alternative hypothesis Hc is that at least one of the
equalities doesn’t hold. C is a k(k−1)/2 by k matrix of all
pairwise contrasts with rank(C) = k− 1, and a = 0. The
test statistic simplifies to

ty = ∑
i
(y− yi)

2− 1
k ∑

i, j
(y− yi)(y− y j) . (23)

The posterior probability “for” H is zero, and that of “don’t
know” about H can be found via (20) with the reference
distribution again a s2-scaled χ2

k distribution.

Figure 3 displays values of r(H) for simulations under
the null i.i.d. sampling model for various k. The number
of pairwise contrasts tested is on quadratic order of k, but
the compound hypothesis H always spans a 1-dimensional
subspace of ΩM. As k increases, the distribution of r(H) us-
ing simulated null data approaches the uniform distribution,
which is the distribution of a correctly calibrated p-value

under the null model. This stands in sharp contrast to the
Bonferroni procedure. Observations obtained from a simi-
lar simulation experiment shows that, while the Bonferroni
correction controls for the the overall test size α , for larger
k it becomes increasingly conservative, in that the fraction
of null samples leading to a rejection of H is far less than α

for all α in range. The culprit to Bonferroni’s conservatism
is that it adjusts the individual test size by mindlessly di-
viding α with the number of hypotheses tested. It neither
respects nor utilizes the logical connection among the large
number of hypotheses. The proposed model captures such
feature, and delivers logically coherent posterior inference
reflective of the geometry of the hypothesis space.

3.2. Quadratic Forms and Calibrated Credible
Regions

The sampling distribution under the i.i.d. assumption is the
spherical multivariate normal distribution. The associated
confidence region for its mean vector is thus spherical. The
proposed model E induces random subsets in the param-
eter space in the form of concentric spherical shells. In
this section, we consider credible regions for M that are
of quadratic forms. These credible regions are special in
that they deliver sharp posterior inference that are also
calibrated with respect to the normal i.i.d. model.

Definition 4 (sharp inference) Given a body of marginal
evidence E, we say that the posterior inference for A ∈
σ(ΩM) is sharp if r(A) = 0.

Definition 5 (calibrated inference) Given E, we say that
posterior inference is lower-calibrated for A∈ σ(ΩM) with
respect to a sampling model Y | M∗ ∼ P∗, if the poste-
rior probability “for” A is equal to the frequentist cover-
age probability of A under the sampling model, when A is
viewed as a function of Y. That is,

p(A) = P∗ (M∗ ∈ A) . (24)

Similarly, posterior inference for A is upper-calibrated if

q(A) = P∗ (M∗ ∈ Ac) . (25)

Posterior inference for A is calibrated if it is both lower-
(or upper-) calibrated and sharp.

For α ∈ [0,1], define the (1−α) posterior credible re-
gion

Aα =
{

M ∈ΩM : (M−y)′ (M−y)≤ F−1
1−α

}
, (26)

where F−1
α is the α th-quantile of the posterior auxiliary

distribution µE. By (13) and (14), we have that

p(Aα) = 1−α, q(Aα) = α. (27)



The posterior inference coincides with the i.i.d. model infer-
ence, when hypotheses of quadratic forms (such as Aα ) are
contemplated. This should come as no surprise, since when
Aα is viewed as a quadratic function of y, its probabilistic
property is precisely the aspect of the i.i.d. assumption that
is preserved under the vacuous orientation assumption.

Theorem 6 (sharp credible region.) Aα is a sharp pos-
terior credible region for M. That is, r(Aα) = 0.

Theorems 6 is a direct consequence of (27). We also
have the following.

Theorem 7 (calibrated credible region.) Aα is a cali-
brated posterior credible region with respect to the i.i.d.
sampling model, for all M∗ and all α .

To prove Theorem 7, one just need to show that α =
P∗
(
(Y−M∗)′ (Y−M∗)> F−1

1−α

)
for all M∗ and all α .

That indeed is the case, when P∗ is the normal i.i.d. sam-
pling distribution specified in (1) and (2).

3.3. Rectangular Parallelepipedal Regions

Under the sampling model in (1), for i = 1, · · · ,k, a size-
α test for hypothesis Hi : Mi = 0 is dual to a confidence
interval for Mi of the form (yi±Φ(1−α/2) · s). If a com-
pound null hypothesis H : ∩k

i=1Hi is contemplated, and if
the confidence intervals for each component hypothesis are
calculated as above, the familywise error rate (i.e. the prob-
ability of making at least one false rejection) exceeds α . As
alluded to in Section 1, the Bonferroni procedure accounts
for the fact that k hypotheses are tested simultaneously. To
maintain the familywise error rate at no more than α , the
test size for each component hypothesis is reduced to α/k.
Hence, a Bonferroni-corrected test for hypothesis H is dual
to the rectangular confidence region

⊗k
i=1 (yi±bα · s) , (28)

where bα = Φ(1−α/2k) is the Bonferroni-corrected and
standardized half width of the univariate interval.

To parallel the Bonferroni confidence region, consider
rectangular parallelepipedal regions of the form

Cα =
{

M ∈ΩM : M ∈ ⊗k
i=1 (yi± cα · s)

}
. (29)

Posterior probabilities associated with Cα can be regarded
as a function of the standardized half width cα . We have
the following results.

Theorem 8 The posterior probabilities of Cα are

{p(Cα) ,q(Cα) , r (Cα)}=
{F
(
c2

α

)
,F
(
kc2

α

)
−F

(
c2

α

)
,1−F

(
kc2

α

)
} (30)

where F is the CDF of the χ2
k distribution.

To prove Theorem 8, notice that p(Cα) is the probability
that RM|E is fully contained in Cα , i.e. its radius less than or
equal to cα · s. On the other hand, q(Cα) is the probability
that RM|E fully contains Cα , i.e. its radius greater than√

kcα · s. A lemma immediately follows.

Lemma 9 Let cα and cα be the standardized half widths
of Cα such that it is lower-calibrated (i.e. p(Cα) = 1−α)
and upper-calibrated (i.e. q(Cα) = α), respectively. We
have

cα =
(
F−1

1−α

)1/2
, cα =

(
F−1

1−α
/k
)1/2

(31)

where F−1
α is the α th-quantile of the χ2

k distribution.

Just like the Bonferroni half width bα , cα is an increasing
function of the dimension k. On the other hand, cα is a
decreasing function of k. The three quantities are identical
when k = 1. Table 1 displays a comparison among the three
quantities for various k at α = 0.05.

Table 1: Half widths of Cα for various k, α = 0.05. cα =
bα = cα when k = 1. cα < bα < cα when k > 1.

k c0.05 b0.05 c0.05

1 1.96 1.96 1.96
2 1.73 2.24 2.45
5 1.49 2.58 3.33
10 1.35 2.81 4.28
100 1.12 3.48 11.15

We also consider the posterior probabilities for rectan-
gles to which the Bonferroni procedure assigns 1−α con-
fidence. A comparison for various k and α is displayed
in Table 2. As k increases, both the posterior “for” and
“against” probabilities approach 0, and the posterior “don’t
know” probability approaches 1. Unlike spherical regions,
posterior inference for rectangular regions is not sharp un-
der the vacuous orientation assumption. This reveals that,
to make sharp probabilistic statements on rectangular re-
gions require substantial model input concerning the depen-
dence structure of observation errors. The growing extent
of “don’t know” posterior probability quantifies the extent
to which a sharp probabilistic assignment on a rectangular
region need to depend on such assumptions, increasingly
so as the dimension of the parameter space grows.

4. Case With Unknown Variance

As alluded to in Section 1, under the sampling model in
(1) every unknown parameter Mi is measured only once.
There is no hope to extract knowledge about the variance
parameter S2 from the data. If S2 is not known precisely,



Table 2: Posterior probabilities associated with Bonferroni
(1−α) rectangles (28), for α = 0.05 (left) and
0.2 (right).

α = 0.05 α = 0.2

k p q r p q r
1 0.95 0.05 0.00 0.80 0.20 0.00
2 0.92 0.01 0.07 0.74 0.07 0.19
5 0.75 0.00 0.25 0.48 0.00 0.52
10 0.36 0.00 0.64 0.14 0.00 0.86
100 0.00 0.00 1.00 0.00 0.00 1.00

it needs to be assumed to follow a prior distribution. This
section describes a modification to the proposed model, to
accommodate the case that S2 is not known but rather fol-
low a prior distribution. The unknown variance assumption
posits that

S2 =Us, (iv.2)

where Us is an auxiliary variable bearing some known prior
distribution for S2, and is independent of the auxiliary
variable U from (iii). Write U = (U,Us), and denote by
E.2 = {(i),(ii),(iii),(iv.2)} the body of evidence using the
alternative unknown variance assumption. By assuming in-
dependence between U and Us, E.2 is judged independent
according to Definition 1, and is eligible for combination
via Dempster’s Rule. The projection and combination op-
erations follow the same fashion as described in Section 3.
E.2 implies the following class of subsets of Ω:

RE.2 = {
(
Y,M,E,S2) ∈Ω :

Y = y, Y−M = E, E′E = S2U, S2 =Us}, (32)

and the down projection of RE.2 onto ΩM is

RM|E.2 = {M ∈ΩM : (M−y)′ (M−y) =U/Us}. (33)

One can use any preferred distribution as the prior distribu-
tion for S2. One computationally convenient choice is the
Inv-χ2 distribution with ν degrees of freedom. By indepen-
dence of U and Us, the ratio U/Us ∼ µE.2 = (k/ν)F(k,ν),
the scaled F-distribution with scaling factor k/ν and de-
grees of freedom k and ν . All calculations in Section 3
remain the same after replacing µE with µE.2. Posterior
inference based on other prior specifications follows the
same logic.

5. Discussion

Several useful generalizations to the proposed model are to
be explored in future studies.

Elliptical distributions. The sampling distribution em-
ployed by the i.i.d. model is a multivariate normal dis-
tribution with identity covariance matrix, which is a spe-
cial kind of elliptical distribution. The vacuous orienta-
tion assumption can be generalized to other families of
elliptical distributions with covariance Σ, for which the
probability distribution is a function of the configuration
(M−Y)′Σ−1 (M−Y). Of particular interest are the mul-
tivariate t and Laplace distributions, suitable for measure-
ment errors are expected to be both heavy-tailed and depen-
dent.

Multivariate regression. The current model setting can
be generalized to accommodate covariate information.
Specifically, let M = Xβ , where X is a k by p design ma-
trix and β a p-vector of coefficients. A vacuous orientation
assumption on the observation errors now induces posterior
inference about β in a similarly vacuous manner. Note that
the current model produces meaningful simultaneous poste-
rior inference when the number of hypotheses far exceeds
the number of unknown parameters. In the same way, the
regression model with the vacuous orientation assumption
can deliver “large p, small k” inference, that is, when the
regression model itself is underdetermined.

Finer variance decomposition. Lastly, the vacuous orien-
tation assumption itself is also subject to extension. Notice
that the configuration of k i.i.d. normal error terms can be
decomposed into a collection of up to k variance compo-
nents, such that they’re all independent among each other
and with degrees of freedom that sum to k. In fact, both the
i.i.d. model and the vacuous orientation model are special
cases of such variance decomposition. The former is the
trivial decomposition into k components, each of degrees
of freedom 1. The latter is the canonical decomposition
into two components, configuration and orientation, of de-
grees of freedom 1 and k−1 respectively. One can imagine
generalizing the vacuous assumption onto other variance
decompositions to express degrees of ignorance over the
dependence structure among errors.
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