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Abstract
This paper is devoted to three topics. First, to prove a
measurability theorem for multifunctions with values
in non-metrizable spaces, which is required to show
that solutions to stochastic wave equations with inter-
val parameters are random sets; second, to apply the
theorem to wave equations in any space dimension;
and third, to compute upper and lower probabilities
of the values of the solution in the case of one space
dimension.
Keywords: random sets, fundamental measurability
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tions

1. Introduction

In order to motivate the subject of the paper, consider a
stochastic dynamical system

d
dt

u(t) = F
(
u(t),λ

)
+G

(
u(t),λ

)
N(t) (1)

where u(t) is the response of the system, λ comprises the
system parameters, and N(t) is an external excitation in
the form of a stochastic process. The response u(t) may
be scalar-valued or n-dimensional, the parameters λ take
values in Rm, say. For example, u(t) may be the response
of a building under earthquake excitation, the vibrational
response of a bridge under random traffic, a biological quan-
tity evolving under external disturbances, or – in financial
mathematics – the value of an option under the uncertain
development of the price of the underlying asset. The stan-
dard model for the noise process N(t) is Gaussian white
noise as the (generalized) derivative of Brownian motion.
In this case, (1) can be interpreted as an Itô differential
equation.

We need to introduce a more specific notation. The noise
is a stochastic process on some time interal T and a proba-
bility space (Ω,Σ,P). Accordingly, the response is also a
stochastic process, i.e., a map T ×Ω→ Rn, which is mea-
surable with respect to ω at each fixed t. In addition, the
response depends on the values λ of the system parameters.
Thus we will write more accurately uλ (t,ω) in place of
u(t) from now on.

Next, assume that the system parameters λ are uncertain
and described by some imprecise probability model. We
put ourselves in the framework of random sets [4, 14].

To recall the notion of a random set, let S be a topological
space, P (S) the power set of S and B (S) the Borel σ -
algebra on S. A random set on a probability space (Ω,Σ,P)
with values in S is a multifunction X : Ω→P (S) such that
the upper inverses

X−(B) = {ω ∈Ω : X(ω)∩B 6= /0} (2)

are measurable for every Borel set B ∈B (S).
Let the system parameters in (1) be described by a ran-

dom set Λ : Ω→ Rm. (Without restriction of generality,
(Ω,Σ,P) may be taken to be the same probability space
as the one underlying the stochastic system.) Then the re-
sponse is also a multifunction, which can be viewed from
various perspectives. First, at fixed t ∈ T , one may consider
the multifunction

X(t,ω) = {uλ (t,ω) : λ ∈ Λ(ω)} (3)

on Ω with values in Rn. Second, and more generally, the
response can be seen as a multifunction on Ω with values
in the space of trajectories of system (1), usually the space
C (T,Rn) of continuous functions on T with values in Rn,
equipped with the topology of uniform convergence on
compact subsets of T , i.e.,

X(ω) = {uλ (·,ω) : λ ∈ Λ(ω)}. (4)

In the simplest case when the random set reduces to an
interval Λ = [λ ,λ ], this becomes

X(ω) = {uλ (·,ω) : λ ≤ λ ≤ λ}. (5)

In order to go on with computing probability bounds, one
should show that the multifunctions (3), (4), (5) are actually
random sets.

The theory of random set valued solutions to (1) has
been developed in [18, 19] and applied to problems of
earthquake engineering [20] as well as geotechnical relia-
bility [15, 16]. In both cases, the excitation is reasonably
modelled by Gaussian white noise, whereas the uncertainty
of system parameters such as damping coefficients or soil-
related properties are more plausibly modelled by random
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sets. We mention that other set-valued theories for treating
this issue have been proposed, such as set-valued stochas-
tic integrals [11], mutational analysis [12], fuzzy stochas-
tic processes [21]; for the relation of these approaches to
stochastic differential inclusions, see [13].

An important ingredient in proving that the multifunc-
tions (3), (4), (5) are random sets is the Fundamental Mea-
surability Theorem [14], which can be applied here in its
classical form for Polish spaces (see Section 2).

The situation is quite different when the independent
variable in (1) is multi-dimensional and has a time compo-
nent t as well as a spatial component x. Then (1) becomes
a stochastic partial differential equation, and the trajecto-
ries of the solutions turn out to be generalized stochastic
processes already in simplest cases. Random set solutions
to stochastic partial differential equations have not been
addressed in the literature. This paper undertakes first steps
in this direction. The basic model of a stochastic partial
differential equation [6] is the stochastic wave equation(

∂
2
t − c2

∆
)

uc = Ẇ (6)

on Rd+1, where Ẇ is space-time Gaussian white noise,
∆ = ∂ 2

x1
+ · · ·+∂ 2

xd
is the Laplacian, and c > 0 is a constant,

the propagation speed. The underlying probability space
is the white noise probability space, see Subsection 3.2.
It is well-known [6, 25] that in space dimensions d ≥ 2,
the solution uc is a generalized stochastic process, that
is, its trajectories uc(ω) belong to the Schwartz space of
distributions D ′(Rd+1). (For the convenience of the reader,
all required notions from the theory of distributions are
collected in Appendix B.)

Replacing the propagation speed c by an interval [c,c]
with c > 0 results in the multifunction

X(ω) = {uc(ω) : c≤ c≤ c} (7)

on Ω with values in the power set of D ′(Rd+1). Endowing
D ′(Rd+1) with the Borel σ -algebra generated by its weak
topology (see Appendix A), one would like to show that
X is a random set. However, D ′(Rd+1) is not metrizable
(see Appendix B) and so the Fundamental Measurability
Theorem for Polish spaces does not apply.

The first part of the paper will be devoted to proving a
generalization of the Fundamental Measurability Theorem,
showing that a sequentially compact, Effros measurable
multifunction (see Section 2) with values in the dual of a
separable topological vector space, which is itself separable
and a Souslin space, is a random set. The second part of the
paper provides the details required to apply this result to the
wave equation in arbitrary space dimensions, culminating
in the proof that the multifunction X in (7) is a random
set. In the third part we will focus on the stochastic wave
equation in one space dimension (d = 1). In this case, the
solution is a modified Brownian sheet and consequently

it has almost surely continuous trajectories. Thus one can
consider the R-valued multifunctions

X(x, t,ω) = {uc(x, t,ω) : c≤ c≤ c} (8)

at fixed (x, t). It turns out that the maps (r,ω) →
2
t u1/r(x, t,ω) are Brownian motions with respect to r ∈
[0,∞). Using well-known formulas for the first hitting times,
this will allow us to compute the upper and lower distribu-
tion functions of the random sets (8).

The paper ends with some conclusions and outlook for
further research. The appendices collect the required no-
tions from topology and the theory of distributions.

The presented results have been obtained by the second
author in [26]. Various other generalizations of the Funda-
mental Measurability Theorem beyond Polish spaces can
be found in [1, 4, 8].

2. Measurability of Multifunctions
As suggested by the defining property, a random set is also
referred to as a Borel measurable multifunction. Various
measurability properties will play a role in the Fundamental
Measurability Theorem. A multifunction X is called Effros
measurable if its upper inverses in (2) are measurable for
every open set B⊂ S. The multifunction X is called graph
measurable if its graph

Graph(X) = {(ω,x) ∈Ω×S : x ∈ X(ω)}

is measurable, that is, belongs to the product σ -algebra
Σ⊗B (S). A random variable ξ with values in S is called
a selection of X if ξ (ω) ∈ X(ω) for almost all ω ∈Ω. Let
X be a closed-valued random set. A countable family of
selections ξn is said to be a Castaing representation of X if

X(ω) = cl{ξn(ω),n≥ 1} (9)

for (almost) all ω ∈Ω, where cl denotes the closure in S.

Remark 1 (a) If a multifunction is Effros measurable,
then its lower inverses

X−(B) = {ω ∈Ω : X(ω)⊂ B} (10)

are measurable for every closed set B⊂ X, and vice versa.
This follows from the formula X−(B c) = (X−(B))c.

(b) If a closed valued multifunction X : Ω→ S into some
topological space S has a Castaing representation, then
it is Effros measurable. Indeed, let (ξn)n∈N be a Castaing
representation of X and let B⊂ S open. On the one hand,
ξn(ω) ∈ X(ω) for (almost) all ω ∈Ω and all n ∈ N. Thus
{ω : ξn (ω) ∈ B} ⊂ X− (B) for all n ∈ N. On the other
hand, let ω ∈ X−(B). Since B is open, (9) implies the ex-
istence of an n ∈ N such that ξn(ω) ∈ B for (almost) all
ω ∈Ω. Thus

X− (B) =
⋃

n∈N
{ω : ξn (ω) ∈ B} .



Measurability of X−(B) follows from measurability of the
selections ξn.

(c) When talking about multifunctions X : Ω→P (S)
we assume from now on that

X(ω) 6= /0 for (almost) all ω ∈Ω.

Recall that a subset of a topological space S is called dense
if its closure equals S. The topological space S is separable
if it contains a dense countable subset. A subset of A of S
is sequentially compact if every sequence in A contains a
converging subsequence (with limit in A). Finally, a Polish
space is a separable, metrizable and complete topological
space, while a Souslin space is a Hausdorff space which is
the continuous image of a Polish space.

Let (Ω,Σ,P) be a complete probability space, S a Polish
space, and X : Ω→P (S) a closed-valued multifunction.
The Fundamental Measurability Theorem [14] says that X
is Borel measurable if and only if it is Effros measurable if
and only if it is graph measurable if and only if it admits a
Castaing representation.

In what follows, E is a Hausdorff topological vector
space and E ′ its continuous dual, equipped with its weak
topology (see Appendix A). We denote by 〈x,e〉 the action
of x ∈ E ′ on e ∈ E. The probability space (Ω,Σ,P) is as-
sumed to be complete throughout. Here is the main result
of this section.

Theorem 2 Assume that both E and E ′ are separable
and that E ′ is Souslin. Let X : Ω→P (E ′) be an Effros
measurable multifunction with sequentially compact values.
Then X is Borel measurable, i. e., a random set.

The proof requires a few preparations. Let (ei)i∈N ⊂ E and
(e′i)i∈N ⊂ E ′ be dense countable subsets. Given x ∈ E ′, the
sets

Umn(x)=
{

y ∈ E ′ : |〈y− x,e1〉|< 1
m , . . . , |〈y− x,en〉|< 1

m

}
with m,n ∈ N, form a countable set of neighborhoods of x.
In the following lemmas, E ′ is not required to be a Souslin
space.

Lemma 3 Let A ⊂ E ′ be sequentially compact and x0 ∈
E ′ such that x0 /∈ A. Then there exists ñ ∈ N such that
U1ñ(x0)∩A = /0.

Proof We assume the converse and derive a contradic-
tion. So suppose that x0 /∈ A and U1n(x0)∩A 6= /0 for all
n ∈ N. Then one can find a sequence (xn)n∈N such that
xn ∈U1n(x0)∩A for all n ∈ N. Since (xn)n∈N is a subset
of A, which is sequentially compact, we can introduce a
convergent subsequence by (nk)k∈N ⊂ N, such that

x̄ = lim
k→∞

xnk ∈ A.

From x0 /∈ A it follows that x̄ 6= x0, and so there is e ∈ E
such that

|〈x0− x̄,e〉| ≥ 2. (11)

On the other hand, since (ei)i∈N is dense in E and x0− x̄ is
a continuous linear form, there exists an i0 ∈ N such that∣∣〈x0− x̄,e− ei0

〉∣∣< 1. (12)

Equations (11) and (12) lead to∣∣〈x0− x̄,ei0

〉∣∣= ∣∣〈x0− x̄,e〉−
〈
x0− x̄,e− ei0

〉∣∣
≥ |〈x0− x̄,e〉|−

∣∣〈x0− x̄,e− ei0

〉∣∣> 1.
(13)

Combining (13) and (11) gives

lim
k→∞

∣∣〈x0− xnk ,ei0

〉∣∣= ∣∣〈x0− x̄,ei0

〉
+ lim

k→∞

〈
x̄− xnk ,ei0

〉∣∣
=
∣∣〈x0− x̄,ei0

〉∣∣> 1.

Consequently, there is l0 ∈ N such that∣∣〈x0− xnk ,ei0

〉∣∣> 1, for all k > l0. (14)

On the other hand, we have assumed that xnk ∈U1nk(x0) for
all k ∈ N, i. e.∣∣〈xnk − x0,e1

〉∣∣< 1, . . . ,
∣∣〈xnk − x0,enk

〉∣∣< 1.

But this contradicts (14), if k is large enough such that
nk ≥ i0.

Lemma 4 Let x0 ∈ E ′ and n ∈N. Then there is l ∈N such
that

x0 ∈U2n
(
e′l
)
, (15)

U2n(e′l)⊂U1n(x0). (16)

Proof We choose l in a way that

e′l ∈U2n(x0), (17)

which means that∣∣〈e′l− x0,ek
〉∣∣< 1

2 for all k ∈ {1,2, . . . ,n}.

This is possible, since (e′i)i∈N is dense in E ′. Then (15) fol-
lows immediately from (17). Now suppose that y∈U2n(e′l),
i. e. ∣∣〈y− e′l ,ek

〉∣∣< 1
2 for all k ∈ {1,2, . . . ,n}.

Then we get for all k ∈ {1,2, . . . ,n} that

|〈y− x0,ek〉| ≤
∣∣〈y− e′l ,ek

〉∣∣+ ∣∣〈e′l− x0,ek
〉∣∣< 1

2 +
1
2 = 1,

and so y ∈U1n(x0). This implies (16).

In order to simplify our notation we define a sequence
(Vi)i∈N of open subsets of E ′ such that

{V1,V2, . . .}=
{

U2n
(
e′l
)

: n, l ∈ N
}
.

Combining Lemmas 3 and 4 leads to the following



Corollary 5 For any sequentially compact set A⊂ E ′ and
any x0 ∈ E ′ with x0 /∈ A, there exists an index j ∈ N such
that x0 ∈Vj and Vj ∩A = /0.

Lemma 6 Assume that both E and E ′ are separable. Let
X : Ω→P (E ′) be an Effros measurable multifunction with
sequentially compact values. Then X is graph measurable,
i. e., Graph(X) is Σ⊗B(E ′)-measurable.

Proof Recall that the graph of X is defined by

Graph(X) =
{
(ω,x) ∈Ω×E ′,x ∈ X(ω)

}
.

We will show that

Graph(X)c =
⋃

n∈N
X− (V c

n )×Vn.

By Remark 1(a), this implies the measurability of
Graph(X). Assume first that

(ω,x) ∈ Graph(X)c .

It follows that (ω,x) /∈ Graph(X), and therefore x /∈ X(ω).
By assumption, X(ω) is sequentially compact, and we can
apply Corollary 5. Consequently, there is j ∈ N such that
Vj ∩X(ω) = /0 and x ∈ Vj. Hence, ω /∈ X−(Vj), or equiv-
alently, ω ∈ X−(V c

j ). We get (ω,x) ∈ X−(V c
j )×Vj and it

follows that

(ω,x) ∈
⋃

n∈N
X−(V c

n )×Vn. (18)

Conversely, assume that (18) holds. Then there is j ∈ N
such that (ω,x) ∈ X−(V c

j )×Vj. We follow the arguments
above in the opposite direction and get (ω,x)∈Graph(X)c.

The final ingredient in the proof of Theorem 2 is the pro-
jection theorem [4, Theorem III.23].

Projection Theorem Let (Ω,Σ,P) be a complete proba-
bility space, S a Souslin space and H a subset of Ω×S. If
H belongs to Σ⊗B(S), its projection prΩ(H) belongs to
Σ, where prΩ denotes the projection of Ω×S onto Ω.

Proof of Theorem 2. By Lemma 6, the graph of X is
measurable, i. e., belongs to Σ⊗B(E ′). Let B ∈ B(E ′).
Then

Graph(X)∩ (Ω×B) ∈ Σ⊗B(E ′).

Observe that

X− (B) = prΩ

(
Graph(X)∩ (Ω×B)

)
.

The projection theorem implies that X− (B) ∈ Σ.

3. Application to the Wave Equation
We address generalized solutions in D ′(Rd+1) to the half-
space problem for the wave equation(

∂
2
t − c2

∆
)

uc = g, uc
∣∣
t<0 = 0 (19)

In other words, the support suppuc of the solution should be
a subset of Rd× [0,∞). Here g ∈D ′(Rd+1) with suppg⊂
Rd× [0,∞) and c is a positive constant.

3.1. The Deterministic Case

It is well known [5, Chapter 6] that the problem (19) has a
unique solution uc ∈D ′(Rd+1). In particular, for g = δ , the
Dirac measure at zero in Rd+1, one obtains the unique fun-
damental solution Fc with support in the forward light cone
{(x, t)∈Rd+1 : t ≥ 0, |x| ≤ ct}. If suppg⊂Rd× [0,∞), the
convolution of Fc and g exists (Remark 15), and the solu-
tion uc to (19) is given by uc = Fc ∗ g. Explicit formulas
for the fundamental solution can be found, e. g., in [22]. In
space dimensions d = 1 and d = 2, Fc is a locally integrable
function, in space dimension d = 3, it is a Radon measure,
and in space dimensions d ≥ 4, it is a distribution of higher
order.

Recall that the Dirac measure in Rd+1 is homogeneous
of degree −1 with respect to t (Remark 14). With the nota-
tion introduced before Remark 14, putting n = d +1, this
implies that

Fc =
1
c I−1

c F1

or in informal notation

Fc(x, t) = 1
c F1(x,ct).

A rigorous proof of this would involve the tools outlined
before Remark 14. Here is an informal proof:

(∂ 2
t − c2

∆) 1
c F1(x,ct) = 1

c c2((∂ 2
t −∆)F1

)
(x,ct)

= cδ (x,ct) = δ (x, t).

This shows that 1
c I−1

c F1 is a fundamental solution of the
wave equation with support in the forward light cone. But
the fundamental solution (with this property) is unique,
hence 1

c I−1
c F1 conicides with Fc.

Lemma 7 The maps c→ Fc and c→ uc from (0,∞) to
D ′(Rd+1) are continuous.

Proof For the first assertion, observe that the map (0,∞)→
D(Rd+1), c→ 1

c2 ϕ(x, t
c ) is continuous. Thus

c→ 〈 1
c F1(x,ct),ϕ(x, t)〉= 〈F1(x, t), 1

c2 ϕ(x, t
c )〉

is continuous as well. Actually, on can say more: If c0 > 0,
the map [c0,∞)→ D ′

Γ
(Rd+1), c→ Fc, where D ′

Γ
(Rd+1)

denotes the space of distributions with support in the cone
Γ = {(x, t) ∈ Rd+1 : t ≥ 0, |x| ≤ c0t}, is continuous. To



prove the second assertions, it suffices to recall that for
fixed g ∈ D ′(Rd+1) with support in the upper half-space,
convolution f → f ∗g is a continuous map from D ′

Γ
(Rd+1)

to D ′(Rd+1), see e. g. [24, Section 4] or the arguments in
[26, Section 4.1].

3.2. The Stochastic Case

Let (Ω,Σ,P) be a probability space and d ∈ N. A general-
ized stochastic process X is a weakly measurable map

X : Ω→D ′(Rd+1),

i. e., ω → 〈X(ω),ϕ〉 is measurable for all ϕ ∈ D(Rd+1).
An important example is Gaussian space-time white noise,
denoted by Ẇ , with support in D = Rd × [0,∞). Let
S (D) = S (Rd+1)|D, where S (Rd+1) is the Schwartz
space of rapidly decreasing smooth functions (see Ap-
pendix B). Its continuous dual Ω = S ′(D), equipped with
the Borel σ -algebra Σ = B(S ′(D)) with respect to the
weak topology, is a measurable space. By the Bochner-
Minlos theorem [7, Section 3.2], [9, Theorem 2.1.1]. there
exists a unique probability measure P on S ′(D) such that∫

S ′(D)
ei〈ω,ϕ〉dP(ω) = e

− 1
2 ‖ϕ‖

2
L2(D) (20)

for all ϕ ∈S (D). The completion of (Ω,Σ,P) is called the
white noise probability space. Space-time white noise Ẇ
with support in D is the generalized stochastic process

Ẇ : S ′(D)→D ′(Rd+1),〈
Ẇ (ω),ϕ

〉
= 〈ω,ϕ|D〉 ,

(21)

for all ϕ ∈D(Rd+1). By the defining equation (20), Ẇ is a
Gaussian process. Its probabilistic properties are character-
ized by the Itô isometry

E〈Ẇ ,ϕ〉= 0, E(〈Ẇ ,ϕ〉)2 = ‖ϕ‖2
L2(D).

Proposition 8 There is an (almost surely) unique general-
ized stochastic process uc such that(

∂
2
t −∆

)
uc(ω) = Ẇ (ω), (22)

suppu(ω)⊂ Rd× [0,∞), (23)

in D ′
(
Rd+1

)
for (almost) all ω ∈ Ω. Further uc(ω) de-

pends continuously on c ∈ (0,∞).

Proof Pathwise existence and uniqueness follows from
the deterministic theory outlined in Subsection 3.1. The
solution is given by

uc(ω) = Fc ∗Ẇ (ω)

and depends continuously on c by Lemma 7. Measurability
at fixed c follows from the fact that uc is obtained as a
composition of a measurable and a continuous map:

ω → Ẇ (ω)→ Fc ∗Ẇ (ω),

see again Lemma 7.

Modelling the uncertainty in the propagation speed by a
compact interval [c,c] with c> 0, we are now in the position
to define the solution to the stochastic wave equation as a
multifunction

X : Ω→P
(
D ′(Rd+1)

)
X(ω) = {uc (ω) : c≤ c≤ c} . (24)

As continuous images of a compact interval, the values
X(ω) are sequentially compact and, in particular, closed.

Lemma 9 The multifunction (24) admits a Castaing rep-
resentation and is Effros measurable.

Proof Let (ci)i∈N be a sequence such that cl{ci : i ∈ N}=
[c,c]. Then, because of the continuity of the function c→
uc(ω),

X(ω) = cl
{

uci(ω) : i ∈ N
}

in D ′(Rd+1), for (almost) all ω . By the measurability of the
uci we conclude that (uci)i∈N is a Castaing representation
of X . By Remark 1(b), X is Effros measurable.

Here is the main result of this section.

Theorem 10 The multifunction (24) is a random set.

Proof We wish to apply Theorem 2 with E = D(Rn+1),
E ′ = D ′(Rn+1). By [23, Appendix], both D(Rn+1) and
D ′(Rn+1) are Souslin spaces and, in particular, separable.
The multifunction X is Effros measurable by Lemma 9
and has sequentially compact values. The hypotheses of
Theorem 2 are satisfied.

4. The One-Dimensional Wave Equation
In one space dimension, the fundamental solution is given
by

Fc(x, t) = 1
2c H(t)H(ct−|x|)

where H denotes the Heaviside function. The convolution
of Fc with a function g with support in the upper half-plane
results in d’Alembert’s formula

uc(x, t) = 1
2c

∫ t

0

∫ x+cs

x−cs
g(y,s)dyds

for the solution of the wave equation (19). This formula can
be rewritten as follows. Denote by χ(x,t,c) the indicator func-
tion of the backward triangle {(y,s) : 0≤ s≤ t,x−cs≤ y≤
x+ cs} with vertex at (x, t). Then uc(x, t) = 〈g, 1

2c χ(x,t,c)〉.



4.1. Random Field Solution in One Dimension

The solution to the one-dimensional (d = 1) stochastic
wave equation (22), (23) is known [25] to be a scaled Brow-
nian sheet, transformed to the axis x = ±ct. Actually, by
the Itô isometry, the action of Ẇ on test functions can be
extended to functions in L2(R2). Thus the solution to the
one-dimensional stochastic wave equation can be written
as

uc(x, t) = 〈Ẇ , 1
2c χ(x,t,c)〉= 1

2c

∫ t

0

∫ x+cs

x−cs
dW (y,s).

Lemma 11 Let (x, t) ∈ R× (0,∞), c1,c2 > 0. Then the
covariance between uc1(x, t) and uc2(x, t) is given by

E(uc1(x, t)uc2(x, t)) =
t2

4
min

( 1
c1
,

1
c2

)
.

Proof Again by the Itô isometry,

E(uc1(x, t)uc2(x, t))

= 1
4c1c2

∫
∞

0

∫
∞

−∞

χ(x,t,c1)(y,s)χ(x,t,c2)(y,s)dyds.

The latter integral equals the area of the smaller triangle,
thus it is t2 min(c1,c2). After division by 4c1c2, the smaller
constant cancels, and this results in the desired formula.

In particular, uc(x, t) vanishes as c→ ∞ in the mean square
sense, i. e.,

lim
c→∞

E(u2
c(x, t)) = 0.

Proposition 12 Let t > 0 and x ∈R be fixed. The stochas-
tic process (vr)r≥0, defined by

vr =
2
t

u 1
r
(t,x), r > 0 (25)

with v0 = 0 is a Brownian motion.

Proof Clearly v is a Gaussian process with zero expecta-
tion. The covariance we get from Lemma 11 as

E(vrvs) =
4
t2 E

(
u 1

r
(t,x)u 1

s
(t,x)

)
= min(r,s).

These properties characterize Brownian motion.

Proposition 13 Let c and c be two real numbers such that

0 < c < c < ∞.

Then, for fixed t > 0 and x ∈ R, the multifunction

X : Ω→P(R),
ω →{uc(x, t,ω) : c≤ c≤ c} ,

is a random set.

Proof From (25) we get

uc(t,x) =
t
2

v 1
c

almost surely. Since v is a Brownian motion, the function
c→ uc(x, t,ω) is continuous for almost all ω . It follows
that the sequence of random variables (ucn(t,x))n∈N is a
Castaing representation of X , where (cn)n∈N is a sequence
such that cl{cn : n ∈ N}= [c,c]. Applying the Fundamen-
tal Measurability Theorem in its classical form for Polish
spaces (mentioned in Section 2 after Remark 1) implies
that X is Borel measurable and therefore a random set.

4.2. Upper and Lower Probabilities

In this section, we are going to compute the upper probabil-
ity P(B) and lower probability P(B) for any open interval
B = (b,b). By definition, the upper probability equals

P(B) = P(X ∩B 6= /0) . (26)

Applying the theorem of total probability we can write

P(X ∩B 6= /0) = P
(
∃c ∈ [c,c] : b < uc (t,x)< b

)
=
∫ b

−∞

P
(
∃c ∈ [c,c] : uc(t,x)> b

∣∣uc(t,x) = y
)

f (y)dy

+
∫ b

b
f (y)dy

+
∫

∞

b
P
(
∃c ∈ [c,c] : uc(t,x)< b

∣∣uc(t,x) = y
)

f (y)dy,

where f is the probability density of the random variable
uc(t,x). Letting r = 1/c, r = 1/c, we get

P(X ∩B 6= /0)

=
∫ 2

t b

−∞

P
(
∃r ∈ [r,r] : vr >

2
t

b
∣∣vr = y

)
g(y)dy

+
∫ 2

t b

2
t b

g(y)dy

+
∫

∞

2
t b

P
(
∃r ∈ [r,r] : vr <

2
t

b
∣∣vr = y

)
g(y)dy, (27)

where

g(y) =
1√
2πr

e−
y2
2r

is the probability density of the random variable vr(t,x). It
is a Gaussian random variable with variance r. The probabil-
ities in (27) we express by first hitting times of a Brownian
motion.

So let (wt)t∈[0,∞) be a standard Brownian motion starting
at 0 and let a ∈ R. The first hitting time τ(a) is defined by

τ(a) := min{t : wt = a} .



Its probability distribution Fτ(a) is well known [2, Section
7.4]:

Fτ(a)(t) = P(τ(a)≤ t) =
2√
2πt

∫
∞

|a|
e−

u2
2t du.

If a > 0, then

P(∃s ∈ [0, t] : ws ≥ a) = Fτ(a)(t).

From the continuity of Fτ(a)(t) with respect to a it follows
that

P(∃s ∈ [0, t] : ws > a) = lim
ε→0

P(∃s ∈ [0, t] : ws ≥ a+ |ε|)

= lim
ε→0

Fτ(a+|ε|)(t) = Fτ(a)(t).

Since vr is a Brownian motion with respect to r, it follows
that

P
(
∃r ∈ [r,r] : vr >

2
t

b
∣∣vr = y

)
= F

τ( 2
t b−y) (r− r)

and

P
(
∃r ∈ [r,r] : vr <

2
t

b
∣∣vr = y

)
= F

τ( 2
t b−y) (r− r) .

Hence we can rewrite (27) as

P(X ∩B) 6= /0) =
∫ 2

t b

−∞

F
τ( 2

t b−y) (r− r)g(y)dy

+
∫ 2

t b

2
t b

g(y)dy

+
∫

∞

2
t b

F
τ( 2

t b−y) (r− r)g(y)dy.

Inserting this into (26) shows that the upper probability
P(B) can be expressed in terms of first hitting times of a
Brownian motion.

Finally, we derive a similar expression for the lower
probability

P(B) = P(X ⊂ B).

Using again the law of total probability gives that

P(B) = P
(

2
t b < vr <

2
t b,∀r ∈ [r,r]

)
equals∫ 2

t b

2
t b

P
(

2
t b < vr <

2
t

b,∀r ∈ [r,r]
∣∣vr = y

)
g(y)dy. (28)

The first exit time τ(a,b) of a Brownian motion (wt)t∈(0,∞)
for a < 0 and b > 0 is defined by

τ(a,b) := min{t : wt /∈ (a,b)} .

It has the probability distribution

Fτ(a,b)(t) =
∫ t

0
ccs

(
b+a

2
,

b−a
2

)
ds,

where

ccs(x,y) = L −1
γ→s

(
cosh(x

√
2γ)

cosh(y
√

2γ)

)
for x < y [3, p. 212 and 641]. Here L −1 denotes the inverse
Laplace transform. By the same arguments as in the case
of P we can rewrite (28) as

P(B) =
∫ 2

t b

2
t b

(
1−F

τ( 2
t b−y, 2

t b−y) (r− r)
)

g(y)dy.

Conclusion

The solution to the stochastic wave equation with space-
time white noise as excitation is a generalized stochastic
process when the space dimension d is greater or equal to
2. Set-valued solutions are obtained when the propagation
speed is modelled as an interval. In order to establish that
the set-valued solution is a random set, a new measurabil-
ity theorem in non-metrizable spaces was required. In one
space dimension, the solution to the stochastic wave equa-
tion is a scaled and rotated Brownian sheet. In addition,
the map c→ uc(x, t) is a classical stochastic process; the
covariances E(uc1(x, t),uc2(x, t)) can be computed classi-
cally, and the process c→ uc(x, t) can be transformed into
a Brownian motion, from where upper and lower probabili-
ties could be computed.

In higher space dimensions, one still can compute the
covariances of the processes c→ 〈uc,ϕ〉 for ϕ ∈D(Rd+1).
In dimensions d = 2 and d = 3 this was done in [26]. This
information might be used to compute upper and lower
probabilities of certain functionals of the solution. An ex-
ample of such a functional could be the integral of uc over
a compact subset of Rd+1, which can be defined by em-
ploying the Itô isometry. This is a topic for future research.

Appendix A. Topological Vector Spaces

For the convenience of the reader, the required notions
from the theory of topological vector spaces and the theory
of distributions are collected in these two appendices. All
details on the topics of the two appendices can be found,
for example, in [10, 23].

A vector space E (over R or C) is a topological vector
space, if it is equipped with a topology making addition and
scalar multiplication continuous. It is a Hausdorff space if
any two points have non-intersecting neighborhoods.

The dual E ′ of E is the vector space of all continuous
linear maps from E into R (or C). The action of a linear



map x ∈ E ′ on an element e ∈ E is usually denoted by the
duality bracket

x(e) = 〈x,e〉.

The weak topology on E ′ is given as follows. For x ∈ E ′, a
base of neighborhoods is given by the sets{

y ∈ E ′ : |〈x− y,e1〉|< ε, . . . , |〈x− y,en〉|< ε
}

where n ∈ N, e1, . . . ,en ∈ E, and ε > 0. In the definition,
ε may be taken equal to 1 without loss of generality upon
replacing ei by ei/ε .

A topological vector space E is locally convex if every
point in E has a base of convex neighborhoods. Locally
convex topological vector spaces always have rich duals.
(This is not so for non-locally convex topological vector
spaces: examples are known where the dual degenerates to
E ′ = {0}.) While Theorem 2 holds for general topological
vector spaces, local convexity is an important ingredient in
the theory of distributions.

Appendix B. Schwartz Distributions

The theory of generalized functions of Laurent Schwartz,
the theory of distributions, has become the standard in the
theory of linear partial differential equations. It is needed
here in order to give a meaning to generalized stochastic
processes such as space-time white noise in the context
of the wave equation. Generally, distributions are defined
as members of the dual of certain spaces of test functions.
Let O be an open subset of Rn. The vector space D(O)
is the space of infinitely differentiable (real or complex
valued) functions on O of compact support, i.e., vanish-
ing outside some compact subset of O. Given a compact
subset K ⊂ Ω, DK(O) denotes the subspace of infinitely
differentiable functions with support in K. Equipped with
the topology of uniform convergence, together with all
derivatives, DK(O) becomes a metrizable, complete locally
convex space. Clearly, D(O) is the union of the spaces
DK(O) as K runs through the compact subsets of O. It is
equipped with the locally convex inductive limit topology,
that is, the finest locally convex topology that makes all
inclusions DK(O)→D(O) continuous.

The space of distributions D ′(O) is the dual space of
D(O). Usually, distributions are denoted by roman letters,
whereas test functions are denoted by greek letters. The
action of a distribution u on a test function ϕ is denoted
by the duality bracket. A common abuse of notation is to
display the variable x ∈ O in the duality bracket. Thus the
following notations are in use:

u(ϕ) = 〈u,ϕ〉= 〈u(x),ϕ(x)〉

where the last equality is formally incorrect, albeit quite
intuitive in certain situations.

Every locally integrable function f and every Radon
measure µ on O can be viewed as a distribution by means
of the prescriptions

〈 f ,ϕ〉=
∫

O
ϕ(x)dx, respectively,

∫
O

ϕ(x)dµ(x).

In particular, the Dirac measure at the origin acts as
〈δ ,ϕ〉= ϕ(0).

Distributions can be restricted to open subsets. If O1 ⊂
O is open and u ∈ D ′(O), the restriction is defined by
〈u|O1,ϕ〉= 〈u,ϕ〉where ϕ ∈D(O1), viewed as a subspace
of D(O). The support of a distribution u ∈D ′(O), denoted
by suppu, is the complement of the largest open subset of
O restricted to which u is equal to 0.

Derivatives. The partial derivatives of a distribution
u ∈D ′(O), sometimes referred to as weak derivatives are
defined by

〈∂xiu,ϕ〉=−〈u,∂xiϕ〉, i = 1, . . . ,n.

Higher order derivatives are defined recursively.
Multiplication by smooth functions. If u ∈D ′(O) and χ

is an infinitely differentiable function on O, the product
χu ∈D ′(O) is defined by

〈χu,ϕ〉= 〈u,χϕ〉.

Let τh : x→ x+ h be the translation of Rn by h and A an
invertible (n×n)-matrix with the corresponding linear map
x→ Ax from Rn to Rn. These operations act on D(O) by

τhϕ(x) = ϕ(x−h), Aϕ(x) = ϕ(A−1x)

and on D ′(O) by

〈τhu,ϕ〉= 〈u,τ−hϕ〉, 〈Au,ϕ〉= 〈u, |detA|A−1
ϕ〉.

These formulas are much easier to remember, employing
the informal notation introduced above:

〈τhu,ϕ〉= 〈u(x−h),ϕ(x)〉= 〈u(x),ϕ(x+h)〉
〈Au,ϕ〉= 〈u(A−1x),ϕ(x)〉= 〈u(x), |detA|ϕ(Ax)〉.

Let c 6= 0 and Ic the (n×n)-identity matrix, where the last
diagonal entry is replaced by c. Then Ic maps Rn into Rn,
or stated expicitly, Ic(x1,x2, . . . ,xn) = (x1, . . . ,xn−1,cxn). A
distribution on u∈D ′(Rn) is homogeneous of degree k ∈R
with respect to the last variable, if I−1

c u = cku for all c 6= 0.
Informally written, this means that u(x1, . . . ,xn−1,cxn) =
cku(x1, . . . ,xn−1,xn).

Remark 14 The Dirac measure on Rn is homogeneous of
degree −1 with respect to the last (or any other) variable.
Indeed,

〈I−1
c δ ,ϕ〉= 〈δ , 1

c Icϕ〉= 1
c 〈δ ,ϕ〉

In informal notation, the derivation looks as follows:

〈δ (x1, . . . ,xn−1,cxn),ϕ(x1, . . . ,xn−1,xn)〉
= 〈δ (x1, . . . ,xn−1,xn),

1
c ϕ(x1, . . . ,xn−1,xn/c)〉

= 1
c ϕ(0, . . . ,0,0)〉= 1

c 〈δ ,ϕ〉.



Convolution. The convolution of a distribution u ∈D ′(Rn)
with a test function ϕ ∈D(Rn) at point x ∈ Rn is defined
by

(u∗ϕ)(x) = 〈u,τ−xϕ〉

or in informal notation,

(u∗ϕ)(x) = 〈u(y),ϕ(x+ y)〉.

It is an infinitely differentiable function of x ∈ Rn. The
convolution of a distribution u ∈D ′(Rn) and a compactly
supported distribution v ∈D ′(Rn) is defined by

〈u∗ v,ϕ〉= 〈u, v̌∗ϕ〉

where v̌ is defined by v̌(y) = v(−y). In order to show that
this definition makes sense, one has to invoke the fact that
the support of v̌∗ϕ is contained in the (Minkowski) sum of
the supports of ϕ and v̌. Thus v̌∗ϕ belongs to D(Rn) and
may indeed serve as an argument of the distribution u.

Remark 15 This definition can be generalized to distri-
butions whose supports are in favorable position, meaning
that the intersection of the supports of u and v̌∗ϕ are com-
pact for every ϕ ∈ D(O). In this case, the convolution is
defined by

〈u∗ v,ϕ〉= 〈u,χ(v̌∗ϕ)〉

where χ is an arbitrary element of D(Rn) which is identi-
cally equal to 1 in a neighborhood of suppu∩ supp(v̌∗ϕ).
This situation arises, for example, when u has its support
in a closed half space D and v has its support in a closed
acute cone Γ contained in the interior of D.

Tempered distributions. An infinitely differentiable func-
tion ψ on Rn is called rapidly decreasing, if all its deriva-
tives decay faster to zero than any negative power of |x|
as |x| → ∞. The space of rapidly decreasing functions
S (Rn) is topologized by the (countable) family of semi-
norms given by the suprema over Rn of the derivatives of
ψ , weighted by (1+ |x|)m, m ∈ N. Its dual S ′(Rn) is the
space of tempered distributions. It is a subspace of D ′(Rn).
If D ⊂ Rn is a half space (or – as a matter of fact – the
closure of an open subset of Rn with a sufficiently regular
boundary) one may define S (D) as the set of restrictions
of elements of S (Rn), with the induced topology. Its dual
S ′(D) can be identified with the space of tempered distri-
butions on Rn with support in D.

To complete this excursion into distribution spaces, we
are going to sketch a proof why D ′(O) is not metrizable
with respect to the weak topology. We will have to in-
voke a few further results from the theory of topological
vector spaces. The basic observation is that D ′(O) is se-
quentially complete, that is, every weak Cauchy sequence
converges. This follows from [10, Corollary to Proposition
3.6.5], together with [10, Example 3.6.4]. Thus, if D ′(O)
were metrizable, it would be a complete locally convex

topological vector space (because on metrizable spaces,
completeness and sequential completeness coincide). From
there, contradictions can be obtained in various ways. A
short route is to infer that in this case D ′(O) would be equal
to the algebraic dual D∗(O), which is not true. Indeed, let
E be a vector space (over R or C). The algebraic dual E∗

is the vector space of all linear maps from E into R (or C).
It is known that the continuous dual E ′ of E is complete
with the weak topology if and only if it coincides with
the algebraic dual, that is, E ′ = E∗, see [17, Chapter IV,
Section 6]. Applied in our situation, this would mean that
every linear form on D(O) is continuous. However, this is
not the case. For example, one may define the linear form
〈u,ϕ〉= ∑

∞
k=0 |∂ kϕ| first on the subspace of all ϕ ∈D(R)

for which this sum is finite and then extend u algebraically
to all of D(R). Involving infinitely many derivatives at
zero, u does not belong to D ′(R), as follows from [10,
Proposition 4.4.5].
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