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Introduction
•We investigate the use of imprecise probability for metrology.
•Uncertainty quantification of end-gauge calibration process.
•Limited data.
•Lack of knowledge regarding the source of uncertainty.
•Lack of knowledge of dependencies between measurements.

Model and Objective [2]
Input-output model:
•Uncertain inputs: µ := (µ1, · · · , µm)

•Quantity of interest (output): y
•Known functional relationship: y = f (µ):

µ1

µ2

µm

y = f (µ)

Challenges: The measurements are noisy and limited.
Objective: Obtain a robust estimate of f (µ) based on an estimate of µ

Delta Method [3]
Let X̂ := (X̂1, · · · X̂m) be an estimator of µ.
Assume X̂ ∼ N(µ,Σ) (approximately).
Method:
•Taylor expand f , such that

f (X̂) ≈ f (µ) +∇f (µ)T (X̂ − µ)

•Compute the covariance matrix of f (X̂),

Cov(f (X̂)) := ∇f (µ)TΣ∇f (µ)

•Obtain a confidence interval around f (µ) using the relation:

f (X̂) ∼ N(f (µ),∇f (µ)TΣ∇f (µ))

Limitations:
•f must be differentiable with respect to the input variables.
•f has to be approximately linear around µ for the distributional range

of X̂ .
•f (X̂) may not be Gaussian, when f is highly non-linear.
•We may have to use sample standard deviation instead of Σ and we may

have to use∇f (X̂) instead of∇f (µ).

P-box [1]
P-box: A p-box is specified by two cumulative distribution functions
F and F , and contains the set of all cumulative distribution functions
bounded by F and F :

{F ∈ F : F (x) ≤ F (x) ≤ F (x),∀x ∈ R}.

•Easy propagation through non-linear operators.
•Relaxes/removes distributional assumption.
•Allows to relax assumptions about dependence.

Example: End gauge calibration [2]
Problem: Estimate length (`M) of an end gauge (M) by comparing it
with length (`S) of a known standard (S) using the relation:

`M =
`S(1 + αSθS) + d

1 + αMθM

where, αM and θM (αS and θS) are thermal expansion coefficient and tem-
perature deviation of M (S) and d is the difference between `M and `S.
Linearization gives:

`M = `S + d− `S(δα · θM − αS · δθ)

where, δα = αM − αS and δθ = θM − θS.
quantity sample mean sample standard deviation units
d∗ 0 0.97e-06 cm
`∗S 50 2.5e-06 cm
αM 11.5e-06 1.33e-06 Celsius−1

αS 11.5e-06 1.2e-06 Celsius−1

δα 0 0.58e-06 Celsius−1

θM 20 0.41 Celsius
θS 20 0.411 Celsius
δθ 0 0.029 Celsius

Estimates: We compare inferences from delta method and p-box method,
under various dependence assumptions.

Method mean variance
∆ - method 50 1.156e-11
Independence (all)
Gaussian 50.0000000410598 [2.8239e-06, 4.4617e-06]
Distribution free [49.99191, 50.00807] [0, 0.00034]
Frechet (`S, d)
Gaussian [49.99995, 50.00005] [2.8239e-06, 4.4617e-06]
Distribution free [49.99188, 50.00809] [0, 0.00034]
Frechet (α’s, θ’s)
Gaussian [49.9988, 50.0012] [7.6372e-07, 8.9590e-06]
Distribution free [49.97665, 50.02333] [0, 0.0014]
Frechet (all)
Gaussian [49.99879, 50.00121] [7.6372e-07, 8.9590e-06]
Distribution free [49.97664, 50.02334] [0, 0.0014]

Discussion
•We investigate the use of p-boxes to propagate uncertainty in measure-

ment problems.
•We illustrate our approach using an end gauge calibration problem.
•We compare our result with the classical delta method.
•Using p-boxes, we can relax distributional assumptions.
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