Robust Uncertainty Quantification for Measurement Problems
with Limited InformationTathagata Basu, Jochen Einbeck and Matthias C. M. Troffaes
Department of Mathematical Sciences, Durham University, UKImage: Colspan="2">Image: Colspan="2" Image: Colspan="

Introduction

- We investigate the use of imprecise probability for metrology.
- Uncertainty quantification of end-gauge calibration process.
- Limited data.
- Lack of knowledge regarding the source of uncertainty.

Example: End gauge calibration [2]

Problem: Estimate length (ℓ_M) of an end gauge (M) by comparing it with length (ℓ_S) of a known standard (S) using the relation:

 $\ell_M = \frac{\ell_S (1 + \alpha_S \theta_S) + d}{1 + \alpha_M \theta_M}$

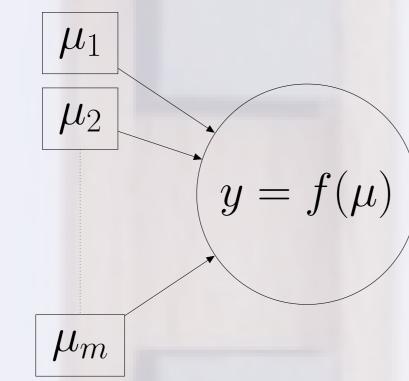
where, α_M and θ_M (α_S and θ_S) are thermal expansion coefficient and tem-

• Lack of knowledge of dependencies between measurements.

Model and Objective [2]

Input-output model:

- Uncertain inputs: $\mu \coloneqq (\mu_1, \cdots, \mu_m)$
- Quantity of interest (output): y
- Known functional relationship: $y = f(\mu)$:



Challenges: The measurements are noisy and limited. **Objective**: Obtain a robust estimate of $f(\mu)$ based on an estimate of μ

Delta Method [3]

Let $\hat{X} \coloneqq (\hat{X}_1, \dots, \hat{X}_m)$ be an estimator of μ .

perature deviation of M (S) and d is the difference between ℓ_M and ℓ_S . Linearization gives:

 $\ell_M = \ell_S + d - \ell_S (\delta \alpha \cdot \theta_M - \alpha_S \cdot \delta \theta)$

where, $\delta \alpha = \alpha_M - \alpha_S$ and $\delta \theta = \theta_M - \theta_S$.

quantity	sample mean	sample standard	deviation	units
d^*	0	0.97e-0	6	cm
ℓ_S^*	50	2.5e-06)	cm
$lpha_M$	11.5e-06	1.33e-0	6	Celsius ⁻¹
$lpha_S$	11.5e-06	1.2e-06	5	Celsius ⁻¹
$\delta \alpha$	0	0.58e-0	6 9	Celsius ⁻¹
$ heta_M$	20	0.41		Celsius
$ heta_S$	20	0.411	NO	Celsius
$\delta heta$	0	0.029		Celsius

Estimates: We compare inferences from delta method and p-box method, under various dependence assumptions.

	—	
Method	mean	variance
Δ - method	50	1.156e-11
Independence (all)		
Gaussian	50.0000000410598	[2.8239e-06, 4.4617e-06]

Assume $X \sim N(\mu, \Sigma)$ (approximately). Method:

• Taylor expand f, such that

 $f(\hat{X}) \approx f(\mu) + \nabla f(\mu)^T (\hat{X} - \mu)$

• Compute the covariance matrix of $f(\hat{X})$,

 $\mathbf{Cov}(f(\hat{X})) \coloneqq \nabla f(\mu)^T \Sigma \nabla f(\mu)$

• Obtain a confidence interval around $f(\mu)$ using the relation: $f(\hat{X}) \sim N(f(\mu), \nabla f(\mu)^T \Sigma \nabla f(\mu))$

Limitations:

P-box |1

- f must be differentiable with respect to the input variables.
- f has to be approximately linear around μ for the distributional range of \hat{X} .
- $f(\hat{X})$ may not be Gaussian, when f is highly non-linear.
- We may have to use sample standard deviation instead of Σ and we may have to use $\nabla f(\hat{X})$ instead of $\nabla f(\mu)$.

Distribution free [0, 0.00034][49.99191, 50.00807] Frechet (ℓ_S, d) [49.99995, 50.00005] [2.8239e-06, 4.4617e-06] Gaussian [49.99188, 50.00809] [0, 0.00034]Distribution free Frechet (α 's, θ 's) [49.9988, 50.0012] [7.6372e-07, 8.9590e-06] Gaussian Distribution free [49.97665, 50.02333] [0, 0.0014]Frechet (all) [49.99879, 50.00121] [7.6372e-07, 8.9590e-06] Gaussian Distribution free [49.97664, 50.02334] [0, 0.0014]

Discussion

- We investigate the use of p-boxes to propagate uncertainty in measurement problems.
- We illustrate our approach using an end gauge calibration problem.
- We compare our result with the classical delta method.
- Using p-boxes, we can relax distributional assumptions.

References

P-box: A p-box is specified by two cumulative distribution functions \underline{F} and \overline{F} , and contains the set of all cumulative distribution functions bounded by \underline{F} and \overline{F} :

$\{F \in \mathcal{F} \colon \underline{F}(x) \le F(x) \le \overline{F}(x), \forall x \in \mathbb{R}\}.$

- Easy propagation through non-linear operators.
- Relaxes/removes distributional assumption.
- Allows to relax assumptions about dependence.

Background image: https://www.npl.co.uk/special-pages/guides/gpg149_gauge

 Scott Ferson et al. 'Constructing probability boxes and Dempster-Shafer structures'. In: Sandia journal manuscript; Not yet accepted for publication (May 2015). ISSN: 9999-0014.
Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Accessed: 2019-05-24. 2008.
Aad W. van der Vaart and Jon A. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer New York, 1996. DOI: 10.1007/978-1-4757-2545-2.

This work is funded by the European Commissions H2020 programme, through the UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-2016, Grant Agreement number 72273.

