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In recent work (Krak et al. 2019) we proved that the
minimal non-negative solution h to the non-linear system

h = IAc + IAc ·T h ,

corresponds to the vector of lower expected hitting
times of a subset A of the set X of possible states of
any type of imprecise Markov chain with lower transition
operator T corresponding to a set T of transition matri-
ces that satisfies some technical closure properties.

We here present two methods to numerically find the
solution of this system; one based on the method of it-
erated lower expectations, and one novel algorithm.
We present an initial comparison of their efficiency, and
show that the novel algorithm appears to substantially
outperform the other method.

Abstract

Our novel method requires that the imprecise Markov
chain has a lower transition operator T such that, for all
x ∈ Ac, there is some nx ∈N for which

[
T nxIA

]
(x) > 0.

This says that P
(
Xnx ∈ A

∣∣X0 = x
)
> 0, or, in words,

every process P ∈PT must be able—have positive
probability—to move from any state x ∈ Ac to some ele-
ment of A in a finite number of steps nx.

A reachability condition

The computational method that we present here re-
quires an auxiliary method to compute the expected
hitting times for any (precise) homogeneous Markov
chain P with transition matrix T ∈T . There are various
methods in the literature for doing this.

Here, computing the expected hitting times reduces to
solving a linear system due to the required reachabil-
ity condition. In particular, it follows immediately from
the definition that EP

[
HA |X0 = x

]
= 0 for all x ∈ A. For

the states in Ac, we define the |Ac|× |Ac| matrix F , as

F(x,y) := T (x,y) for all x,y ∈ Ac.

It can be shown that the matrix (I − F) is invertible,
where I denotes the identity matrix. Moreover, for any
x ∈ Ac, it holds that

EP
[
HA
∣∣X0 = x

]
= ∑

y∈Ac
(I−F)−1(x,y) .

Computing precise hitting times

Expected hitting times for a stochastic process P are
the conditional expectations EP

[
HA
∣∣X0
]

of a function
HA describing the number of steps until A is visited. To
formalise this, note that P is a probability measure on a
measurable space (Ω,F ), where the sample space Ω
is the set of all paths ω : N0→X that the process can
take. The function HA is then defined, for all ω ∈Ω, as

HA(ω) := inf
{

t ∈N0 : ω(t) ∈ A
}

.

A convenient representation of HA is obtained through
the finite horizon approximations H(n)

A , which are de-
fined, for all n ∈N0 and all ω ∈Ω, as

H(n)
A (ω) :=

{
HA(ω) if HA(ω) ≤ n, and
n+ 1 otherwise.

(1)

Then limn→+∞ H(n)
A = HA, and it can be shown that

limn→+∞ EP
[
H(n)

A |X0 = x
]
= EP

[
HA |X0 = x

]
for all x ∈X .

Expected hitting times, detailed

A useful property of the finite horizon approximations
H(n)

A is that their lower (or upper) expectations can be
computed through iterated lower (or upper) expecta-
tion. Specifically, it turns out that there is a very elegant
recursive form that allows us to do this.

To obtain this, define h(0)A := IAc and, for all n ∈N0, let

h(n+1)
A := IAc + IAc ·T h(n)A . (2)

It can then be shown that, for the game-theoretic model
whose local models are described by T , it holds that

EV
T

[
H(n)

A

∣∣X0 = x
]
= h(n)A (x) for all x ∈X and n ∈N0,

and, moreover, when we take limits in n it holds that

EV
T

[
HA
∣∣X0 = x

]
= lim

n→+∞
EV

T

[
H(n)

A

∣∣X0 = x
]

= lim
n→+∞

h(n)A =: h∗A .

This result immediately provides us with a numerical
scheme to compute lower expected hitting times for im-
precise Markov chains: simply iterate the scheme (2)
until some appropriate stopping condition is satisfied.

Recall that the (lower and upper) expected hitting times
are the same for any type of imprecise Markov chain, so
despite being derived for game-theoretic models, this
method also works for any other type of model. More-
over, this method works to compute the upper expected
hitting times, simply replacing the lower transition oper-
ator T by its conjugate upper transition operator T .

Iterated lower expectation

The novel method that we present here provides an
alternative to computing lower and upper expected hit-
ting times through the method of iterated lower (or up-
per) expectations. However, it requires a reachability
condition of the states in A, which makes the method
slightly more restrictive. Nevertheless, a preliminary
comparison of the efficiency of these methods indicates
that this novel method is preferable in those cases
where it can be used.

We recall that the closure conditions on T guarantee
that, for any f : X →R, we can write T f = minT∈T T f .
In other words, there is a minimising vector T f , imply-
ing that the associated argmin is non-empty. With this
observation, the algorithm can be described as follows:

Initialise: Pick any T(0) ∈ T , and let h(0)(x) :=
EP(0)

[
HA
∣∣X0 = x

]
for all x ∈X , where T(0) determines

the homogeneous Markov chain P(0) ∈PH
T .

Iterate: For all n ∈N, let

T(n) ∈ argmin
T∈T

T h(n−1) , (3)

and define h(n)(x) := EP(n)

[
HA
∣∣X0 = x

]
for all x ∈ X ,

where T(n) determines P(n) ∈PH
T .

Convergence: It holds that

lim
n→+∞

h(n)(x) = EH
T

[
HA
∣∣X0 = x

]
= h∗A(x) for all x ∈X .

Note that this result is stated for the imprecise Markov
chain represented as a set of homogeneous Markov
chains. However, because the lower and upper ex-
pected hitting times are the same for any type of im-
precise Markov chain, this method also works for any
other type of model. Moreover, this method works to
compute the upper expected hitting times, simply replac-
ing the selection in (3) to instead be from an argmax.

Novel algorithm

Monotonically improving inner approximation: At
each n ∈N0 the vector h(n) represents the hitting times
of a precise homogeneous Markov chain P(n) ∈PH

T .
Hence, each h(n) is an upper bound on the actual lower
expected hitting time, i.e., an inner approximation of
the quantity of interest. Moreover, the sequence h(n) is
monotonically improving (i.e. decreasing towards the
lower expected hitting times). The same holds, mutatis
mutandis, when computing upper expected hitting times.

Simple stopping criterion: If for some n∈N0 it holds
that h(n) = h(n+1), then it can be shown that h(n) = h∗A, i.e.
that the algorithm has converged after n iterations.

Convergence in finite number of iterations: If the
set T has only a finite number K of extreme points,
a minor specialisation of the algorithm is guaranteed
to converge after a finite number of iterations. In
particular, we then require that in (3), we take T(n) to be
an extreme point of T ; note that this is always possible.
If we do this, then it can be shown that h(n) = h(n+1) = h∗A
for some n≤ K. Moreover, empirically we observe that
this tends to happen for n << K.

Some first properties

It is well known that there is a connection between the
theory of imprecise Markov chains and the theory of
Markov Decision Processes (MDPs). An important
distinction between these theories is the semantics:
with imprecise Markov chains, we optimise over a set of
precise inferences with the aim to obtain robust bounds
on quantities of interest. In contrast, MDPs are typically
formulated to obtain “policies” T ∈T that optimise some
operational reward function. In other words, the possible
variation of T ∈T is either a quantification of uncertainty
about some “true” T , for imprecise Markov chains; or,
in an MDP context, a controllable choice from a set of
feasible parameters of the system.

In the present context, the connection between these
two theories appears to run deeper, and it allows us to
place the algorithms presented here in an MDP context.
Specifically, the characterising equation of the upper
expected hitting times of an imprecise Markov chain is
strongly related to the equation of optimality for an
infinite horizon undiscounted Markov decision process
under the reward function IAc, viz. h = maxT∈T IAc +T h.

When possible, this equation for MDPs is typically
solved using either the value iteration algorithm or the
policy iteration algorithm. However, for infinite horizon
undiscounted MDPs the applicability of these algorithms
seems to be somewhat of an edge case in the literature.
Nevertheless, remarkably, these algorithms appear for-
mally equivalent to the method of iterated lower ex-
pectation, and our novel algorithm, respectively.

We express our sincere gratitude to an anonymous re-
viewer for pointing out this connection. Further investiga-
tion of this connection is a matter of ongoing research.

Relation to MDPs
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