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● Ensemble weather predictions assume that the model error is dominated 
by initial condition (IC) error, hence a Monte-Carlo like sampling of ICs 
that are then run forward through the model. This assumption is shown 
not to be true in practice. A PDF estimated from ensemble members (EMs) 
shows more about the behaviour of the model than about the real system. 

● The extremely high dimensionality of the weather phase space makes it in 
practice mpossible to sample randomly ICs: methods selecting the fastest 
growing perturbations are used instead, to assess ‘all’ possible scenari.

● Extreme events (EE) generally result from nonlinear interactions at small 
scale, which makes them hardly obvious in a probabilistic interpretation of 
ensemble forecasts.

● The probabilistic interpretation of ensemble predictions consequently 
generally does not work well without statistical post-processing [4].

● It consists most often in ftting local PDFs modelling the uncertainty on 
each member, and summing all of them to get a global PDF, supposed to 
estimate the location of the true system in the phase space (Bayesian 
model averaging, Best member dressing); or in assuming  a parametric 
form for the global PDF and deriving its parameters from linear 
combinations of the ensemble's characteristics (mean and variance), e.g. 
Non-homogeneous Gaussian regression.

● Post-processing improves the ensemble skills for common events and 
extends the skillfull prediction horizon. However it is shown to deteriorate 
signifcantly performances for EE.

● A probabilistic approach of mono-model ensemble prediction 
systems (EPS) fails to predict events that are not associated with a 
substantial density of EMs, which is often the case with EEs. 

● We need something traducing the possibility of having the 
system in other areas that the one actually identifed by EMs, and 
yet acknowledging higher probabilities resulting from local 
agglomeration of EMs: possibility theory, with the combination of 
dual possibility/necessity functions seems appropriate. 

● Contrary to the current probabilistic interpretation (under model 
error, and biased sampling), a possibilistic development makes 
more physical sense and offers theoretical guarantees.

●  We use it for bounding the probability of a given weather event 
(here EE) . 
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3. Methodology
● We use the possibilistic FMECA (fault mode effect analysis) presented 

in [1]. The EMs Xm(t), m=1...M are manifestations of a disorder X(t), that 
is the true system state at time t.

4. Test bed & Results

Design of characteristic functions
● Md+(m) is defned from the PDF of Xm(t) associated 

with a given d at a given t.
● Without more information, Md-(m)C is set to 1 

everywhere but in regions m where no members 
have ever been observed (0).

● M+(m) is defned by associating a given symmetrical 
membership function taking value 1 in m and 
decreasing with distance to m.

● M-(m)C  is designed to enforce consistence with the 
fuzzy set M+(m).

● The fuzzy set of the potential and relevant disorders 
given an EPS are respectively given respectively by:

● Their membership function respectively read:

● We consider the prediction of the EE  E=’X<Vq’ 
with Vq the quantile of interest of the 
climatological distribution of X. The degree of 
consistency of E with the resulting possibility 
distribution and the degree to which the later 
certainly implies it provide upper and lower 
bounds on the true probability of E [2]:

●  We reproduce the experiment on an imperfect Lorenz 1996 model developed in 
[3]. The L96 system was developed as a surrogate model for the atmospheric 
dynamics. The system dynamics is governed by the following coupled equations:

●  X11 is the variable of interest for prediction.  Xj are randomly and independently 
drawn from N (Xj ,0.12)

● We use a dataset of 2000 ensemble predictions associated to exact observations 
for the training of the parameter(s) of the membership function associated to M+

(m): here, a unique (for exchangeable EMs) symmetrical triangular function.
● The objective function consists in minimising the Brier score, here computed from 

the average of our probability interval:

● We compare our results to those given by the direct model output (DMO) 
probabilistic prediction:
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● Each manifestation m is characterized via the 
twofold fuzzy set (M+(m),M-(m)C), whose 
respective membership functions defne the 
degree of certainty (resp. possibility) that m 
belongs to the ensemble.

● To each disorder d is associated the twofold 
fuzzy set (Md+(m),Md-(m)C), whose respective 
membership functions defne the degree of 
necessity (resp. possibility) that d alone causes 
m.
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● Results for the quantile q=0.1. The Brier score is lower (mean and lower bound of 
our probability interval) than the DMO’s. The approach is especially more 
interesting for the prediction of EE at small-medium lead times.

● Future works include to combine it to other rules (based on ‘data analysis’, to 
identify precursors to system behaviours) in order to get sharper bounds.
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