A possibilistic interpretation of ensemble predictions:
Experiments on the imperfect Lorenz 96 model
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| . Motivations

* Ensemble weather predictions assume that the model error is dominated
by initial condition (IC) error, hence a Monte-Carlo like sampling of ICs
that are then run forward through the model. This assumption is shown
not to be true in practice. A PDF estimated from ensemble members (EMs)
shows more about the behaviour of the model than about the real system.

* The extremely high dimensionality of the weather phase space makes it in
practice mpossible to sample randomly ICs: methods selecting the fastest
growing perturbations are used instead, to assess ‘all’ possible scenari.

* Extreme events (EE) generally result from nonlinear interactions at small
scale, which makes them hardly obvious in a probabilistic interpretation of
ensemble forecasts.

*The probabilistic interpretation of ensemble predictions consequently
generally does not work well without statistical post-processing [4].

* It consists most often in fitting local PDFs modelling the uncertainty on
each member, and summing all of them to get a global PDF, supposed to
estimate the location of the true system in the phase space (Bayesian
model averaging, Best member dressing); or in assuming a parametric
form for the global PDF and deriving its parameters from linear
combinations of the ensemble's characteristics (mean and variance), e.q.
Non-homogeneous Gaussian regression.

* Post-processing improves the ensemble skills for common events and
extends the skillfull prediction horizon. However it is shown to deteriorate

significantly performances for EE.
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4. Test bed & Results

* We reproduce the experiment on an impertfect Lorenz 1996 model developed in
[3]. The L96 system was developed as a surrogate model for the atmospheric
dynamics. The system dynamics is governed by the following coupled equations:
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« X11is the variable of interest for prediction. Xi are randomly and independently
drawn from N (X;,0.1°)

* We use a dataset of 2000 ensemble predictions associated to exact observations
for the training of the parameter(s) of the membership function associated to M*
(m): here, a unique (for exchangeable EMs) symmetrical triangular function.

* The objective function consists in minimising the Brier score, here computed from

the average of our probability interval: 2
I X Y Brier=- Zil (pg- —I(V; < Vq))

* We compare our results to those given by the direct model output (DMQO)
probabilistic prediction:
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* Results for the quantile g=0.1. The Brier score is lower (mean and lower bound of
our probability interval) than the DMQO's. The approach is especially more
interesting for the prediction of EE at small-medium lead times.

* Future works include to combine it to other rules (based on ‘data analysis’, to
identify precursors to system behaviours) in order to get sharper bounds.
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2. Problem & Approach

* A probabilistic approach of mono-model ensemble prediction
systems (EPS) fails to predict events that are not associated with a
substantial density of EMs, which is often the case with EEs.

*We need something traducing the possibility
system in other areas that the one actually identifi

yet acknowledging higher probabilities resulti

agglomeration of EMs: possibility theory, with the

of having the
ed by EMs, and
ng from local
combination of

dual possibility/necessity functions seems appropriate.
» Contrary to the current probabilistic interpretation (under model
error, and biased sampling), a possibilistic development makes

more physical sense and offers theoretical guarantees.
 We use it for bounding the probability of a given weather event

(here EE) .

3. Methodology

* We use the possibilistic FMECA (fault mode effect analysis) presented
in [1]. The EMs X™(t) m=1...M are manifestations of a disorder X(t), that

IS the true SyStem State at tlme t' — Degree of necessity that d causes m, d=0

— Degree of certainty that d alone does not cause m
- - Degree of necessity that d causes m, d=-8
- Degree of certainty that d alone does not cause m

e Each manifestation m is characterized via the -

twofold fuzzy set (M*(m)M(m)-), whose
respective membership functions define the
degree of certainty (resp. possibility) that m

Membership function

belongs to the ensemble.

e To each disorder d is associated the twofold
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fuzzy set (Md*(m)Md(m)), whose respective

membership functions define the degree of

— Degree of necessity that m is present
— Degree of certainty that m is not present

necessity (resp. possibility) that d alone causes

.

Design of characteristic functions

e Md"(m) is defined from the PDF of X™(t) associated
with a given d at a given t.
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e Without more information, Md(m)* is set to 1 °;
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everywhere but in regions m where no members
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have ever been observed (0).
* M"(m) is defined by associating a given symmetrical
membership function taking value 1 in m and
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decreasing with distance to m.
« M(m)- is designed to enforce consistence with the
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tuzzy set M*(m).
* The fuzzy set of the potential and relevant disorders
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given an EPS are respectively given respectively by:
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Deisp ={d € D,M(d)* N M~ =@ AND M(d)" "M+ = &}
D* ={d € Deyisp, M(d)T N M+ # @ AND M(d)~ "M~ +# &}

* Their membership function respectively read:

fp =min (1 — cons(M(d)",M~),1 —cons(M(d)~,M™))
s (d) = min (up (d), max(cons(M(d)™, M™), cons(M(d)~, M™)))

» We consider the prediction of the EE E="X<V,’

—Possibility distribution of ¢
PDF
*x EPS member

with V; the quantile of interest of the

climatological distribution of X. The degree of
consistency of E with the resulting possibility
distribution and the degree to which the later
certainly implies it provide upper and lower
bounds on the true probability of E [2]:

minggp pp(d) < P(X <Vy) < maxgep p}(d)

—EE treshold Vq
- - Observation
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