

A New Class of Multivariate Prior Distributions with an

Application to Reliability Engineering

F. Ruggeri¹, M. Sánchez-Sánchez², M. A. Sordo³ and A. Suárez-Llorens⁴

Universidad de Cádiz ISIPTA2019, 3-6 July (2019), Ghent (Belgium)

11th International Symposium on Imprecise Probabilities: Theories and Applications

1. Bayesian framework

- Let X be the underlying observation with probability density function (PDF) $f_{\theta}(x)$.
- θ represents the unknown parameter defined in the set of states $\Theta \subseteq \mathbb{R}^n$, $n \in \mathbb{N}$, $n \ge 1$.
- Let π be the specific prior state of knowledge over Θ with PDF $\pi(\theta)$.
- Let π_x be the posterior state of knowledge after observing data, x, with PDF given by

 $\boldsymbol{\pi}_{\mathbf{x}}(\boldsymbol{\theta}) = \frac{l(\boldsymbol{\theta} \mid \mathbf{x}) \boldsymbol{\pi}(\boldsymbol{\theta})}{m_{\boldsymbol{\pi}}(\mathbf{x})},$

- where $l(\theta \mid \mathbf{x})$ and $m_{\pi}(\mathbf{x})$ denote the likelihood function and the marginal density, respectively.
- Objective: To make inference in some quantity of interest, $H_X(\theta)$, by using π_x .

• Class of priors. Let π be a specific MTP_2 prior belief. We will define the weighted band $\Gamma_{w_1,w_2,\pi}$ associated with π based on w_1 and w_2 , a decreasing weight function and an increasing weight function, respectively, (weighted band, for short), as

 $\Gamma_{w_1,w_2,\boldsymbol{\pi}} = \{ \boldsymbol{\pi}' : \boldsymbol{\pi}_{w_1} \leq_{lr} \boldsymbol{\pi}' \leq_{lr} \boldsymbol{\pi}_{w_2} \}.$

- Key result 2 Let π be a specific MTP_2 prior and let $\Gamma_{w_1,w_2,\pi}$ be a weighted band associated with π based on w_1 and w_2 . Given the observed data \mathbf{x} , if $l(\boldsymbol{\theta} \mid \mathbf{x})$ is MTP_2 in $\boldsymbol{\theta}$, then for all $\pi' \in$ $\Gamma_{w_1,w_2,\pi}$ we obtain that $\pi_{w_1,\mathbf{x}} \leq_{lr} \pi'_{\mathbf{x}} \leq_{lr} \pi_{w_2,\mathbf{x}}$.
- Key result 3. Let X be the underlying random variable and let H be a functional of interest such that $H_X(\theta)$ is non-decreasing in θ . Given π , a specific MTP_2 prior, and the corresponding weighted band $\Gamma_{w_1,w_2,\pi}$ based on w_1 and w_2 , if $l(\theta \mid \mathbf{x})$ is MTP_2 in θ , then the univariate ran-

• Hellinger metric (H).

$$H(\mathbf{X}, \mathbf{Y}) = \frac{1}{2} \int (\sqrt{f_{\mathbf{X}}(\mathbf{x})} - \sqrt{f_{\mathbf{Y}}(\mathbf{x})})^2 d\mathbf{x}.$$

• Kullback-Leibler divergence (KL).

$$KL(\mathbf{X}, \mathbf{Y}) = \int f_{\mathbf{X}}(\mathbf{x}) \ln \frac{f_{\mathbf{X}}(\mathbf{x})}{f_{\mathbf{Y}}(\mathbf{x})} d\mathbf{x}.$$

• Summary of the uncertainty. a = 0.8, b = 0.4, c = 0.17 and a' = 3.8, b' = 3.4, c' = 1.17.

Priors	$\parallel oldsymbol{\pi}, oldsymbol{\pi}_{w_1}$	$oldsymbol{\pi}, oldsymbol{\pi}_{w_2}$	$oldsymbol{\pi}_{w_1}, oldsymbol{\pi}_{w_2}$
H metric	0.6991	0.6959	0.9998
KL divergence	66.724	7.5520	27.101
Posteriors	$oldsymbol{\pi_t}, oldsymbol{\pi_{w_1,t}}$	$\boldsymbol{\pi}_{\mathbf{t}}, \boldsymbol{\pi}_{w_2, \mathbf{t}}$	$oldsymbol{\pi}_{w_1,\mathbf{t}},oldsymbol{\pi}_{w,\mathbf{t}}$
Posteriors H metric	$\begin{array}{ c c c c }\hline \boldsymbol{\pi}_{\mathbf{t}}, \boldsymbol{\pi}_{w_1, \mathbf{t}} \\ \hline 0.7219 \end{array}$	$[\pi_{t}, \pi_{w_{2}, t}]$ 0.0071	$\frac{\boldsymbol{\pi}_{w_1,\mathbf{t}},\boldsymbol{\pi}_{w,\mathbf{t}}}{0.7709}$

2. The classical criticism

Why a unique prior? A Bayesian analysis is robust if it does not depend sensitively on the initial assumptions -Bayesian sensitivity-.

■ A solution. To replace the specific prior distribution by a class of priors Γ.

Example: Given a specific prior π and ϵ in (0,1), the classical ϵ -contamination class is defined as

 $\Gamma_{\epsilon} = \{ \boldsymbol{\pi}' : \boldsymbol{\pi}' = (1 - \epsilon)\boldsymbol{\pi} + \epsilon \mathbf{Q}, \ \mathbf{Q} \in \boldsymbol{Q} \},\$

where π' is given by a mixture and ${\cal Q}$ is a family of priors called the class of contaminations.

- Problem 1. The class Γ implies a class of posterior distributions Γ_x .
- Problem 2. The class Γ_x implies a range of the posterior quantity of interest.
- Problem 3. It is difficult in practice to compute that range. We consider a new class of priors.

3. The main results

- Key definition 1. Let X and Y be two absolutely continuous [discrete] n-dimensional random vectors with distribution functions F_X and F_Y and densities [discrete densities] f_X and f_Y, respectively, such that
- $f(\mathbf{x})g(\mathbf{y}) \leq f(\mathbf{x} \wedge \mathbf{y})g(\mathbf{x} \vee \mathbf{y})$ for every \mathbf{x} and \mathbf{y} in \mathbb{R}^n .
- Then **X** is said to be smaller than **Y** in the multivariate likelihood ratio order, denoted by $\mathbf{X} \leq_{lr} \mathbf{Y}$.
- Key definition 2. A function $l : \mathbb{R}^n \mapsto \mathbb{R}^+$,

dom variables obtained by mapping the posterior distributions by the functional $H_X(\theta)$ satisfy

 $H_X(\boldsymbol{\pi}_{w_1,\mathbf{x}}) \leq_{st} H_X(\boldsymbol{\pi}'_{\mathbf{x}}) \leq_{st} H_X(\boldsymbol{\pi}_{w_2,\mathbf{x}}),$

 $\forall \boldsymbol{\pi'} \in \Gamma_{w_1, w_2, \boldsymbol{\pi}}.$

• Consequence 1. The predictive expectations are ordered:

 $E^{\boldsymbol{\pi}_{w_1,\mathbf{t}}}[H_X(\boldsymbol{\theta})] \leq E^{\boldsymbol{\pi}'_{\mathbf{t}}}[H_X(\boldsymbol{\theta})] \leq E^{\boldsymbol{\pi}_{w_2,\mathbf{t}}}[H_X(\boldsymbol{\theta})].$

• Consequence 2. Bayesian credible quantilebased intervals are ordered:

 $F_{H_X(\boldsymbol{\pi}_{w_1,\mathbf{t}})}^{-1}(p) \leq F_{H_X(\boldsymbol{\pi}_{\mathbf{t}}')}^{-1}(p) \leq F_{H_X(\boldsymbol{\pi}_{w_2,\mathbf{t}})}^{-1}(p).$

4. A real example

Let's consider failure data from 40 underground trains associated with electrical opening commands. Failure monitoring started on 19th September 1991 ended on 31st December 1998. When a failure took place, both odometer reading and failure date were recorded. Finally, 530 failures were recorded.

The model. A nonhomogeneous Poisson process (NHPP) with a Power Law intensity function:

 $\lambda(t|\boldsymbol{\theta}) = M\beta t^{\beta-1}, \ \boldsymbol{\theta} = (M,\beta) \in \mathbb{R}^+ \times \mathbb{R}^+.$

• The likelihood function. Let $\mathbf{t}^* = (T_1, \dots, T_n)$ be the vector of failures times recorded in the interval (0, T]. By changing the scale, i.e., $\mathbf{t} = (T_1/T, \dots, T_n/T)$. Then

(c) Histograms for posterior distributions

(d) The CDFs for posterior distributions

Figure 2: The weighted prior distributions and the posterior weighted distributions.

• The functional of interest The expected number of failures in future time intervals $T_u = [T, T+u]$. $H_X(\theta) = E[N(1+h) - N(1)] = M((1+h)^{\beta} - 1).$

Making inference. True Value vs Forecasts.

TIME		$\boldsymbol{\pi}_{w_1,\mathbf{t}}$		$\pi_{ m t}$		$\boldsymbol{\pi}_{w_2,\mathbf{t}}$	
T_u	TRUE	$IC_{95\%}$ cred.	MEAN	$IC_{95\%}$ cred.	MEAN	$IC_{95\%}$ cred.	MEAN
921	83	[47.63, 78.53]	63	[66.25, 102]	84	[70.95, 107.8]	89
92_{2}	72	[42.81, 72.30]	57	[63.20, 98.12]	80	[68.45, 104.64]	86
92_{3}	62	[39.83, 68.37]	54	[61.25, 95.66]	78	[66.84, 102.62]	84
93_{1}	72	[35.90, 63.29]	49	[48.22, 79.32]	63	[50.67, 82.44]	66
93_{2}	62	[35.52, 58.77]	45	[45.28, 75.51]	60	[47.82, 78.78]	63
93_{3}	42	[30.15, 55.58]	42	[43.16, 72.78]	57	[45.76, 76.13]	60
94_1	62	[31.59, 57.54]	44	[42.01, 71.31]	56	[43.53, 73.29]	58
94_2	42	[29.12, 54.22]	41	[39.77, 68.38]	54	[41.35, 70.45]	55
94_{3}	35	[27.28, 51.68]	39	[38.05, 66.12]	52	[39.66, 68.24]	53
95_{1}	42	[30.84, 56.54]	43	[40.92, 69.91]	55	[42.10, 71.45]	56
95_{2}	35	[28.92, 53.94]	41	[39.21, 67.66]	53	[40.42, 69.26]	54
95_{3}	23	[27.40, 51.86]	39	[37.82, 62.84]	51	[39.08, 67.48]	53
96_{1}	35	[26.20, 50.21]	38	[34.49, 61.42]	47	[35.35, 62.58]	48
96_{2}	23	[24.65, 48.05]	36	[32.99, 59.43]	46	[33.88, 60.61]	47
					n		

 $(n \in \mathbb{N}, n \ge 2)$ is said to be multivariate totally positive of order 2 (MTP_2), (TP2 when n = 2) if satisfies

 $l(\mathbf{x})l(\mathbf{y}) \leq l(\mathbf{x} \wedge \mathbf{y})l(\mathbf{x} \vee \mathbf{y}), \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}.$

Additionally, a *n*-dimensional random vector **X** with PDF *f* is said to be MTP_2 if its density *f* is MTP_2 or, equivalently, if **X** \leq_{lr} **X**.

• Key definition 3. Let θ a random vector with $\pi(\theta)$ its density (probability) function. Let $w(\theta)$ be a non-negative weight function and assume that $E[w(\theta)]$ exists. A new density (probability) function will be denoted by

 $\boldsymbol{\pi}_w(\boldsymbol{\theta}) = \frac{w(\boldsymbol{\theta})\boldsymbol{\pi}(\boldsymbol{\theta})}{E[w(\boldsymbol{\theta})]}$

• Key result 1. Let π be a specific prior belief which is MTP_2 in the variables. Let w be an increasing (decreasing) weight function. Then $\pi \leq_{lr} (\geq_{lr})\pi_w$.

$$l(\boldsymbol{\theta}|\mathbf{t}) = \prod_{i=1}^{n} \lambda(T_i) \cdot \exp(-m(T|\boldsymbol{\theta})),$$
$$= M^n \beta^n \exp((\beta - 1) \sum_{i=1}^{n} \ln(\frac{T_i}{T})) \exp(-M$$

The prior. The prior belief π over Θ = ℝ⁺ × ℝ⁺ is a bivariate random vector having independent exponential marginal distributions:

 $\boldsymbol{\pi}(\boldsymbol{\theta}) = \lambda \mu \exp(-\lambda M) \exp(-\mu\beta), \ (M,\beta) \in \boldsymbol{\Theta},$

where the hyperparameters λ and μ are assumed to be known: from the initial values $M_0 = 495.5$ and $\beta_0 = 0.79$, we take the values $\lambda = 1/M_0$ and $\mu = 1/\beta_0$.

The weighted functions.

• $w_1(\boldsymbol{\theta}) = \theta_1^{a-1} \theta_2^{b-1} \exp[-c\theta_1 \theta_2].$ • $w_2(\boldsymbol{\theta}) = \theta_1^{a'-1} \theta_2^{b'-1} (\theta_1^{c'} + \theta_2^{c'}).$

The metrics. Degree of uncertainty.

97 ₁ 23 $[22.75, 45.40]$ 34 $[22.75, 45.40]$	[29.73, 55.04] 42	[30.46, 56.03]	43
---	-------------------	----------------	----

5. Concluding remarks

- Elicitation and interpretation are easy.
- Prior uncertainty reflected by metrics.
- Bounds for the range of quantities of interest.

Basic references

- Arias-Nicolás, Ruggeri and Suárez-Llorens (2016). New classes of priors based on stochastic orders and distortion functions. Bayesian Analysis, 11 (4): 1107–1136..
- Ruggeri, Sánchez-Sánchez, Sordo and Suárez-Llorens (2019). On a new class of multivariate prior distributions: theory and application in reliability. Submitted to Bayesian Analysis.

emails: fabrizio@mi.imati.cnr.it¹, marta.sanchez@uca.es², mangel.sordo@uca.es³, alfonso.suarez@uca.es⁴. 11th International Symposium on Imprecise Probabilities: Theories and Applications.