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1. Bayesian framework

Let X be the underlying observation with prob-
ability density function (PDF) fθ(x).
θ represents the unknown parameter defined in
the set of states Θ ⊆ Rn, n ∈ N, n ≥ 1.
Let π be the specific prior state of knowledge
over Θ with PDF π(θ).
Let πx be the posterior state of knowledge after
observing data, x, with PDF given by

πx(θ) =
l(θ | x)π(θ)

mπ(x)
,

where l(θ | x) and mπ(x) denote the likelihood
function and the marginal density, respectively.
Objective: To make inference in some quantity
of interest, HX(θ), by using πx.

2. The classical criticism

Why a unique prior? A Bayesian analysis is ro-
bust if it does not depend sensitively on the initial
assumptions -Bayesian sensitivity-.

A solution. To replace the specific prior distribu-
tion by a class of priors Γ.

Example: Given a specific prior π and ε in (0, 1),
the classical ε-contamination class is defined as

Γε = {π′ : π′ = (1− ε)π + εQ, Q ∈ Q},
where π′ is given by a mixture and Q is a family of
priors called the class of contaminations.

Problem 1. The class Γ implies a class of pos-
terior distributions Γx.
Problem 2. The class Γx implies a range of the
posterior quantity of interest.
Problem 3. It is difficult in practice to compute
that range. We consider a new class of priors.

3. The main results

Key definition 1. Let X and Y be two abso-
lutely continuous [discrete] n-dimensional ran-
dom vectors with distribution functions FX and
FY and densities [discrete densities] fX and fY,
respectively, such that
f (x)g(y) ≤ f (x∧y)g(x∨y) for every x and y in Rn.

Then X is said to be smaller than Y in the
multivariate likelihood ratio order, denoted by
X ≤lr Y.
Key definition 2. A function l : Rn 7→ R+,
(n ∈ N, n ≥ 2) is said to be multivariate totally
positive of order 2 (MTP2), (TP2 when n = 2) if
satisfies

l(x)l(y) ≤ l(x ∧ y)l(x ∨ y), ∀x,y ∈ Rn.

Additionally, a n-dimensional random vector X
with PDF f is said to be MTP2 if its density f is
MTP2 or, equivalently, if X ≤lr X.
Key definition 3. Let θ a random vector with π(θ)
its density (probability) function. Let w(θ) be a
non-negative weight function and assume that
E[w(θ)] exists. A new density (probability) func-
tion will be denoted by

πw(θ) =
w(θ)π(θ)

E[w(θ)]

Key result 1. Let π be a specific prior belief
which is MTP2 in the variables. Let w be an
increasing (decreasing) weight function. Then
π ≤lr (≥lr)πw.

Class of priors. Let π be a specific MTP2

prior belief. We will define the weighted band
Γw1,w2,π associated with π based on w1 and w2,
a decreasing weight function and an increasing
weight function, respectively, (weighted band,
for short), as

Γw1,w2,π = {π′ : πw1 ≤lr π
′ ≤lr πw2} .

Key result 2 Let π be a specific MTP2 prior and
let Γw1,w2,π be a weighted band associated with
π based on w1 and w2. Given the observed data
x, if l(θ | x) is MTP2 in θ, then for all π′ ∈
Γw1,w2,π we obtain that πw1,x ≤lr π′x ≤lr πw2,x.
Key result 3. Let X be the underlying random
variable and let H be a functional of interest
such that HX(θ) is non-decreasing in θ. Given
π, a specific MTP2 prior, and the correspond-
ing weighted band Γw1,w2,π based on w1 and w2,
if l(θ | x) is MTP2 in θ, then the univariate ran-
dom variables obtained by mapping the poste-
rior distributions by the functional HX(θ) satisfy

HX(πw1,x) ≤st HX(π′x) ≤st HX(πw2,x),

∀π′ ∈ Γw1,w2,π.
• Consequence 1. The predictive expectations

are ordered:

Eπw1,t[HX(θ)] ≤ Eπ′t[HX(θ)] ≤ Eπw2,t[HX(θ)].

• Consequence 2. Bayesian credible quantile-
based intervals are ordered:

F−1HX(πw1,t)
(p) ≤ F−1

HX(π′t)
(p) ≤ F−1HX(πw2,t)

(p).

4. A real example

Let’s consider failure data from 40 underground
trains associated with electrical opening com-
mands. Failure monitoring started on 19th
September 1991 ended on 31st December 1998.
When a failure took place, both odometer reading
and failure date were recorded. Finally, 530 fail-
ures were recorded.

The model. A nonhomogeneous Poisson pro-
cess (NHPP) with a Power Law intensity func-
tion:

λ(t|θ) = Mβtβ−1, θ = (M,β) ∈ R+ × R+.

The likelihood function. Let t∗ = (T1, . . . , Tn) be
the vector of failures times recorded in the in-
terval (0, T ]. By changing the scale, i.e., t =
(T1/T, . . . , Tn/T ). Then

l(θ|t) =

n∏
i=1

λ(Ti) · exp(−m(T |θ)),

= Mnβn exp((β − 1)

n∑
i=1

ln(
Ti
T

)) exp(−M).

The prior. The prior belief π over Θ = R+ × R+

is a bivariate random vector having independent
exponential marginal distributions:

π(θ) = λµ exp(−λM) exp(−µβ), (M,β) ∈ Θ,

where the hyperparameters λ and µ are as-
sumed to be known: from the initial values
M0 = 495.5 and β0 = 0.79, we take the values
λ = 1/M0 and µ = 1/β0.
The weighted functions.
• w1(θ) = θa−11 θb−12 exp[−cθ1θ2].
• w2(θ) = θa

′−1
1 θb

′−1
2 (θc

′
1 + θc

′
2 ).

The metrics. Degree of uncertainty.

• Hellinger metric (H).

H(X,Y) =
1

2

∫
(
√
fX(x)−

√
fY(x))2dx.

• Kullback-Leibler divergence (KL).

KL(X,Y) =

∫
fX(x) ln

fX(x)

fY(x)
dx.

Summary of the uncertainty. a = 0.8, b = 0.4,
c = 0.17 and a′ = 3.8, b′ = 3.4, c′ = 1.17.

Priors π,πw1 π,πw2 πw1,πw2

H metric 0.6991 0.6959 0.9998
KL divergence 66.724 7.5520 27.101

Posteriors πt,πw1,t πt,πw2,t πw1,t,πw,t

H metric 0.7219 0.0071 0.7709
KL divergence 5.1661 0.0287 4.4334

The functional of interest The expected number
of failures in future time intervals Tu = [T, T +u].

HX(θ) = E[N(1 + h)−N(1)] = M((1 + h)β − 1).

Making inference. True Value vs Forecasts.

TIME πw1,t πt πw2,t

Tu TRUE IC95% CRED. MEAN IC95% CRED. MEAN IC95% CRED. MEAN

921 83 [47.63, 78.53] 63 [66.25, 102] 84 [70.95, 107.8] 89

922 72 [42.81, 72.30] 57 [63.20, 98.12] 80 [68.45, 104.64] 86

923 62 [39.83, 68.37] 54 [61.25, 95.66] 78 [66.84, 102.62] 84

931 72 [35.90, 63.29] 49 [48.22, 79.32] 63 [50.67, 82.44] 66

932 62 [35.52, 58.77] 45 [45.28, 75.51] 60 [47.82, 78.78] 63

933 42 [30.15, 55.58] 42 [43.16, 72.78] 57 [45.76, 76.13] 60

941 62 [31.59, 57.54] 44 [42.01, 71.31] 56 [43.53, 73.29] 58

942 42 [29.12, 54.22] 41 [39.77, 68.38] 54 [41.35, 70.45] 55

943 35 [27.28, 51.68] 39 [38.05, 66.12] 52 [39.66, 68.24] 53

951 42 [30.84, 56.54] 43 [40.92, 69.91] 55 [42.10, 71.45] 56

952 35 [28.92, 53.94] 41 [39.21, 67.66] 53 [40.42, 69.26] 54

953 23 [27.40, 51.86] 39 [37.82, 62.84] 51 [39.08, 67.48] 53

961 35 [26.20, 50.21] 38 [34.49, 61.42] 47 [35.35, 62.58] 48

962 23 [24.65, 48.05] 36 [32.99, 59.43] 46 [33.88, 60.61] 47

971 23 [22.75, 45.40] 34 [29.73, 55.04] 42 [30.46, 56.03] 43

5. Concluding remarks

Elicitation and interpretation are easy.
Prior uncertainty reflected by metrics.
Bounds for the range of quantities of interest.
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