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‘ 1. Bayesian framework I

m et X be the underlying observation with prob-
ability density function (PDF) fg(z).

= O represents the unknown parameter defined in
the set of states ® C R", n € N,n > 1.

m Let w be the specific prior state of knowledge
over ® with PDF 7(0).

m Let 7, be the posterior state of knowledge after
observing data, x, with PDF given by

_ (0] x)(8)

B M (X)

where [(0 | x) and m,(x) denote the likelihood

function and the marginal density, respectively.

= Objective: To make inference in some quantity
of interest, Hx(8), by using .

‘ 2. The classical criticism I

Why a unique prior? A Bayesian analysis is ro-
bust if it does not depend sensitively on the initial
assumptions -Bayesian sensitivity-.
= A solution. To replace the specific prior distribu-
tion by a class of priors I'.

75 (0)

)

Example: Given a specific prior = and ¢ in (0, 1),
the classical e-contamination class is defined as

Pe={n"7'=1-em+eQ, Qe Q},

where 7’ is given by a mixture and Q is a family of
priors called the class of contaminations.

m Problem 1. The class I' implies a class of pos-
terior distributions T',.

= Problem 2. The class I', implies a range of the
posterior quantity of interest.

= Problem 3. It is difficult in practice to compute
that range. We consider a new class of priors.

‘ 3. The main results I

m Key definition 1. Let X and Y be two abso-
lutely continuous [discrete] n-dimensional ran-
dom vectors with distribution functions Fx and
Fy and densities [discrete densities] fx and fy,
respectively, such that

FOg(y) < f(xAY)g(xVy) for every x and y in R".

Then X is said to be smaller than Y in the
multivariate likelihood ratio order, denoted by
X <ir Y.

m Key definition 2. A function [ : R" — RT,
(n € N,n > 2) is said to be multivariate totally
positive of order 2 (MTP,), (I'P2 when n = 2) if
satisfies

[(X)Y) <IXAY)I(XVY), VX, y € R".

Additionally, a n-dimensional random vector X
with PDF f is said to be MT P, if its density f is
MT P, or, equivalently, if X <;,. X.

m Key definition 3. Let 8 a random vector with 7(8)
its density (probability) function. Let w(0) be a
non-negative weight function and assume that
Elw(0)] exists. A new density (probability) func-
tion will be denoted by

w(6)m(6)

Elw(6)]

m Key result 1. Let m be a specific prior belief
which is MTP;, in the variables. Let w be an

increasing (decreasing) weight function. Then
w Slr (er)ww-

7T, (0) =
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m Class of priors. Let w be a specific MTP,
prior belief. We will define the weighted band
["w, vy, @ssociated with w based on w; and ws,
a decreasing weight function and an increasing
weight function, respectively, (weighted band,
for short), as

/- /
le,wg,ﬂ' — {7T - Ty <i T <y ﬂwg} .

m Key result 2 Let « be a specific MT P, prior and
let Iy, w,» D€ @ weighted band associated with
7 based on w; and w,. Given the observed data
x, if [(0 | x)is MTP, in 8, then for all ©' €
[y wy.r We obtain that m, x <pp 7 <jp Ty x-

m Key result 3. Let X be the underlying random
variable and let H be a functional of interest
such that Hx(0) is non-decreasing in 8. Given
7, a specific MT P, prior, and the correspond-
ing weighted band I, ., » based on w; and ws,
if 1(0 | x)is MTP; in @, then the univariate ran-
dom variables obtained by mapping the poste-
rior distributions by the functional Hx(60) satisfy

HX(WUJLX) Sst HX<7T;> Sst HX<7Tw2,X>7
Vao' € Ty o

e Consequence 1. The predictive expectations
are ordered:

E™14[Hx(0)] < E™[Hyx(0)] < E™24[Hx()].

e Consequence 2. Bayesian credible quantile-
based intervals are ordered:

1 1 _q
FHX(ﬂ-wl,t)<p) S FHX(W;:)(p) S FHX(Ter’t)<p>'

‘ 4. A real example I

Let's consider failure data from 40 underground
trains associated with electrical opening com-
mands. Failure monitoring started on 19th
September 1991 ended on 31st December 1998.
When a failure took place, both odometer reading
and failure date were recorded. Finally, 530 fail-
ures were recorded.

= The model. A nonhomogeneous Poisson pro-
cess (NHPP) with a Power Law intensity func-
tion:

At@) = Mpt", 0= (M,5) e Rt x RT.

= The likelihood function. Let t* = (131,...,T,) be
the vector of failures times recorded in the in-
terval (0,7]. By changing the scale, i.e., t =
(11/T,...,T,/T). Then

1616) = TTNT) - exp(=m(T16),

= M (8~ 1) D () exp(— M)

m The prior. The prior belief r over ® = R™ x R
IS a bivariate random vector having independent
exponential marginal distributions:

m(0) = Apexp(—=AM) exp(—pf), (M, ) € O,

where the hyperparameters \ and p are as-
sumed to be known: from the initial values
M, = 495.5 and 5, = 0.79, we take the values
A=1/Myand p = 1/p,.

= The weighted functions.
o w(0) = 097105 exp[—ch60).
o wy(0) = 0 105167 + 65).
= The metrics. Degree of uncertainty.
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e Hellinger metric (H).

HXY) =5 [ (VARG - VB

e Kullback-Leibler divergence (KL).
Sx(x

XY = x) In
KL( ) ) /fX( >1 fY(X

» Summary of the uncertainty. « = 0.8, b = 0.4,
c=0.17anda’ =38, =34, =1.17.

;dx.

Priors T, T, | T, Ty | Ty, T,
H metric 0.6991 | 0.6959 0.9998
KL divergence | 66.724 | 7.5520 | 27.101
Posteriors | 7, Ty, t | T, Tt | Ty ts Tt
H metric 0.7219 | 0.0071 0.7709
KL divergence | 5.1661 | 0.0287 | 4.4334

(b) The CDFs for prior distributions

(c) Histograms for posterior distributions (d) The CDFs for posterior distributions

Figure 2: The weighted prior distributions and the posterior weighted distributions.

= The functional of interest The expected number
of failures in future time intervals T, = [T, T' + u].

Hx(0) = E[N(1+4+h)— N(1)] = M((1 +h)’ = 1).

= Making inference. True Value vs Forecasts.

TIME T, t T Tyt
T,  TRUE| [Cy594 CRED. | MEAN| [Cysy, CRED. | MEAN| [Cy50, CRED. | MEAN
92, 83 |[47.63,78.53] |63 |[66.25,102] |84 |[70.95,107.8] | 89
92, 72 |]42.81,72.30] | 57 ][63.20,98.12] | 80 | [68.45,104.64] 86
923 62 |[39.83,68.37] |54 | [61.25,95.66] | 78 | [66.84,102.62] 84
931 72 [[35.90,63.29] |49 |[48.22,79.32] |63 |[50.67,82.44] | 66
93, 62 |[35.52,58.77] |45 | [45.28,75.51] |60 | [47.82,78.78] | 63
935 42 | [30.15,55.58] |42 | [43.16,72.78] | 57 | [45.76,76.13] | 60
94, 62 | [31.59,57.54] |44 | ]42.01,71.31] |56 | [43.53,73.29] | 58
94y 42 |[29.12,54.22] |41 | [39.77,68.38] | 54 | [41.35,70.45] | 55
943 35 | [27.28,51.68] |39 |[38.05,66.12] |52 | [39.66,68.24] | 53
951 42 |[30.84,56.54] |43 |[40.92,69.91] | 55 | [42.10,71.45] | 56
959 35 |[28.92,53.94] |41 ][39.21,67.66] | 53 | [40.42,69.26] | b4
953 23 | |27.40,51.86] |39 |[37.82,62.84] |51 | [39.08,67.48] | 53
96, 35 |[26.20,50.21] |38 |[34.49,61.42] |47 | [35.35,62.58] | 48
96, 23 | [24.65,48.05] |36 |[32.99,59.43] |46 | [33.88,60.61] | 47
97, 23 | [22.75,45.40] |34 ][29.73,55.04] |42 | [30.46,56.03] | 43

‘ 5. Concluding remarks I

= Elicitation and interpretation are easy.
= Prior uncertainty reflected by metrics.
= Bounds for the range of quantities of interest.
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