Semi-Graphoid Properties Independence based on

Fabio G. Cozman

of Variants of Epistemic Regular Conditioning

Universidade de São Paulo – Brazil

Goal:

to study the semi-graphoid properties of concepts of independence based on regular conditioning.

A bit of background...

The results

Theorem

If $(Y \in X \mid Z)$ denotes regular-epistemic irrelevance of Y to X given Z, then:

• $(X \text{ IR } Y \mid X)$ and $(Y \text{ IR } X \mid X)$;

Credal set: a set of (Kolmogorovian-style) probability measures.

Focus on finite spaces.

Credal sets may be open, may fail to be convex.

Graphoid properties:

Symmetry: $(X \perp \!\!\!\perp Y \mid Z) \Rightarrow (Y \perp \!\!\!\perp X \mid Z)$ Redundancy: $(X \perp \!\!\!\perp Y \mid X)$ Decomposition: $(X \perp \!\!\!\perp (W, Y) \mid Z) \Rightarrow (X \perp \!\!\!\perp Y \mid Z)$ Weak union:

 $(X \perp (W, Y) \mid Z) \Rightarrow (X \perp Y \mid (W, Z))$ Contraction: $(X \perp Y \mid Z) \land (X \perp W \mid (Y, Z)) \Rightarrow$ $(X \perp (W, Y) \mid Z)$

Intersection

 $(X \perp W | (Y, Z)) \& (X \perp Y | (W, Z)) \Rightarrow$ $(X \perp (W, Y) | Z).$

- If (X IR W, Y | Z), then (X IR Y | Z);
 If (X IR W, Y | Z), then (X IR Y | W, Z) [NOTE: FAILS FOR de Finettian-conditioning!];
- If $(Y \in X \mid Z)$ and $(W \in X \mid Y, Z)$, then $(W, Y \in X \mid Z)$.

Theorem

If $(Y \Vdash X \mid Z)$ denotes regular-confirmational irrelevance of Y to X given Z, then the same properties listed in the previous theorem hold for \sqcap .

Theorem

Regular-confirmational and regular-epistemic independence satisfy Symmetry and Redundancy. (And fail all other properties! They satisfy Decomposition and Weak Union when lower probabilities are larger than zero.)

Theorem

If $(Y \in X \mid Z)$ denotes type-5 epistemic irrelevance of Y to X

Semi-graphoid properties: all of them except Intersection.

Regular conditioning: $\mathbb{K}^{>}(X|H) = \{\mathbb{P}(\cdot|H) : \mathbb{P} \in \mathbb{K}(X) \text{ and } \mathbb{P}(H) > 0\}$ whenever $\overline{\mathbb{P}}(H) > 0$.

A menu of independences

Y is regular-confirmationally irrelevant to X given Z: K[>](X|y,z) = K[>](X|z) whenever P(y,z) > 0.
Y is regular-epistemically irrelevant to X given Z: E[>][f|y,z] = E[>][f|z] whenever P(y,z) > 0.
Y is type-5 irrelevant to X given Z: K[>](X|B,z) = K[>](X|z) whenever P(B,z) > 0.
Y is type-5 epistemically irrelevant to X given Z: E[>][f|B,z] = E[>][f|z] whenever P(B,z) > 0.
All of them fail Symmetry.
By "symmetrizing" we get: regular-confirmational, regular-epistemic, type-5 type-5 epistemic independence. given Z, then:

- $(X \text{ IR } Y \mid X)$ and $(Y \text{ IR } X \mid X)$;
- If $(X \text{ IR } W, Y \mid Z)$, then $(X \text{ IR } Y \mid Z)$;
- If $(X \text{ IR } W, Y \mid Z)$, then $(X \text{ IR } Y \mid W, Z)$;
- If $(W, Y \in X \mid Z)$, then $(Y \in X \mid Z)$;
- If (W, Y | R X | Z), then (Y | R X | W, Z);

Theorem

If $(Y \in X \mid Z)$ denotes type-5 irrelevance of Y to X given Z, then the same properties listed in the previous theorem hold.

Theorem

Type-5 independence and type-5 epistemic independence both satisfy Symmetry, Redundancy, Decomposition and Weak Union.

Complete and strong independence

Complete independence satisfies all semi-graphoid

This work was partially supported by CNPq and FAPESP.

properties.

Strong independence satisfies Symmetry, Redundancy, Decomposition and Weak Union but it fails Contraction!

Conclusion

In this paper: a detailed map of semi-graphoid properties (all properties not mentioned fail...!).
Confirmational/epistemic seem very weak... "type-5 condition" leads to better behavior.