
Improving the Convergence of Iterative Importance
Sampling for Computing Upper and Lower Expectations
Thomas Fetz, Unit for Engineering Mathematics, University of Innsbruck, Austria

• Exact θ and estimates θ̂Ω(.), θ̂Ω, θ̂Ω,s=6 for n = 100:

• ϑ̂Ω(s, t) = θ̂Ω,s(t), θ̂Ω and minima τ∗Ω for n = 1000:

Visualising estimates

Combining previous results of iteration

• Estimates θ̂
Ω,s(i)(t) are bad for t far from s(i)

→ wrong minimum at τ∗Ω(s(i)) far from s(i)

→ leading away from fixed point→ circling.

• Exact function ϑ is constant in s-direction.

Observations

• Weighted combination of previous results θ̂
Ω,s(i) .

• High weights for t close to s(i) (good estimates).
• Low weights for t far from s(i) (bad estimates).

Idea

s(k+1) = τ
(k)
∗Ω
(
s(k), . . . ,s(1)

)
= argmin

t∈T

k

∑
i=1

ϕ
(k)
s(i)

(t) · θ̂
Ω,s(i)(t).

Weights ϕ
(k)
s(i)

(t) with ϕ
(k)
s(i)

(t)≥ 0 & ∑
k
i=1 ϕ

(k)
s(i)

(t) = 1.

New iteration scheme

ϑ̂
(k)
Ω

(s, t) = ϕ
(k)
s (t) · ϑ̂Ω(s, t)+

k−1

∑
i=1

ϕ
(k)
s(i)

(t) · θ̂
Ω,s(i)(t).

Updating ϑ̂Ω for visualising

Three approaches for weighting functions

Norm ‖t− s(i)‖2
D = (t− s(i))TD2 (t− s(i)) measures the

distance between t and s(i).

The diagonal matrix D = diag(d1, . . . ,dm) is used for
scaling and for defining what is “near” to s(i).

Weighting functions ϕ̃
(k)
s(i)

(t) = e−‖t−s(i)‖2D becomes

smaller for increasing distance between t and s(i).

Normalisation: ϕ
(k)
s(i)

(t) = ϕ̃
(k)
s(i)

(t)/∑
k
j=1 ϕ̃

(k)
s(j)(t).

In case where T = [t1, t1]× ·· · × [tm, tm] one could define
d j = c/(t j− t j) with a constant c > 0.

Disadvantage: We have to find an appropriate D.

Exponential functions

ϕ̃
(k)
s(i)

(t) = neff,s(i)(t) which is the effective sample size

neff,s(t) =
(∑n

k=1 wst(xs(Vk)))
2

∑
n
k=1 wst(xs(Vk))2 .

neff,s(i) is equal to the sample size for t = s(i) (standard

sampling, θ̂Ω) and becomes smaller for t far from s(i).

Normalisation: ϕ
(k)
s(i)

(t) = ϕ̃
(k)
s(i)

(t)/∑
k
j=1 ϕ̃

(k)
s(j)(t).

Advantage: Cheap and parameter free!

Effective sample size

We use basis functions ϕ
(k)
s(i)

as in the finite element
method which have the following properties:

ϕ
(k)
s(i)

(s(j)) = δi j, no disturbance by other ϕ
(k)
s(j) at s(i).

ϕ
(k)
s(i)

(t) = 0 outside the elements surrounding s(i).

Weighting functions (1D version):

For T = [t, t]: (s(i1), . . . ,s(ik)) = sort(s(1), . . . ,s(k)).

The intervals [t,s(i1)], [s(i1),s(i2)], . . . , [s(ik), t] are the el-
ements and the ϕ

(k)

s(i j)
corresponds to nodes s(i j):

ϕ
(k)
s(i j)

(t) =

t− s(i j−1)

s(i j)− s(i j−1)
t ∈ [s(i j−1),s(i j)], j = 2, . . . ,k,

s(i j+1)− t
s(i j+1)− s(i j)

t ∈ [s(i j),s(i j+1)], j = 1, . . . ,k−1,

1 t ∈ [t,s(i1)], j = 1,

1 t ∈ [s(ik), t], j = k,

0 otherwise.

Disadvantage: Difficult in higher dimensions.

Piecewise multi-linear interpolation

• Contour plots of ϑ̂Ω, iteration paths of the fixed point iterations starting
at s(1) = 6 for n = 1000,100000, s = t (θ̂Ω from above) and τ∗Ω.

• Bad estimates θ̂
Ω,s(i) for t far from s(i) → may cause divergence.

Examples: standard fixed point iterations & exact ϑ

• Updated contour plots ϑ̂
(k)
Ω

, k = 1,2,3, iteration paths, s = t and τ∗Ω.

• Single estimates θ̂
Ω,s(1) , θ̂

Ω,s(2) , combined estimate θ̂
(2)
Ω,s(2)

and θ̂Ω.

Examples: three combination methods

• For c = 30 we get scaling factor d = c/(t− t) = 30/14 = 2.14.

Combination method using exponential functions

Combination method using effective sample size

Piecewise linear interpolation

• All three approaches lead to convergence after few iterations.
• The method with effective sample size is cheap and easy to apply.
• No new evaluations of expensive function h are needed.
• The methods are complementary to the increase of sample coverage.

Conclusion

Given: A function h : A⊆ Rd → R which is expensive to evaluate and a family { ft}t∈T of density functions.

Aim: Efficient computation of lower expectation θ∗ = mint∈T θ(t), optimising w.r.t. θ(t)=
∫

A h(x) ft(x)dx.

Method: Using Monte-Carlo simulation and importance sampling to get an estimate θ̂ which is cheap to evaluate
in the optimising algorithm. The estimate θ̂∗ of θ∗ is improved applying fixed point iteration. Here, we are focussed
on the improvement of the convergence of the fixed point iteration reusing previous results of the iteration.

Problem statement

• Function h: h(x) = 1D(x), D = (−∞,−2]∪ [2,∞).

• Family of density functions: ft ∼ N(µ(t),σ2(t)),
mean µ(t) = t, variance σ2(t) = 4, t ∈ T= [−7,7].

• Exact result: θ∗ = 0.3173 at t∗ = 0. (plot of θ below)

Simple numerical example for visualising

Methods for estimating function θ

1. Set of random numbers Ωt = {U1,U2, . . . ,Un},
Ui = (Vi,Wi), Vi,Wi ∼ U([0,1]) i.i.d.

2. Sample points ∼ N(µ(t),σ2(t)) (Box-Muller)
xt(Ui) = xt(Vi,Wi) = µ(t)+σ(t) ·

√
−2lnVi · cos(2πWi).

3. Monte Carlo simulation w.r.t. Ωt :

θ̂Ωt (t) =
1
n

n
∑

i=1
1D(xt(Vi,Wi)), estimate of θ(t).

Three steps of Monte Carlo simulation

• Different sets of random numbers (Vi,Wi) for each t ∈ T.
• Different sets of n sample points xt(Vi,Wi) for each t ∈ T.
• Resulting in a noisy estimate θ̂Ω(·) of θ using MC.
• Expensive because of the evaluation of h for different

sets of sample points. Bad for optimising.

Approach 1, expensive

• One single set of n random numbers Ui = (Vi,Wi) for all
parameter values t ∈ T, Ωt = Ω.

• Different sets of n sample points xt(Vi,Wi) for each t ∈ T.
• Estimate θ̂Ω of θ is now a step function.
• Again expensive and difficult to optimize.

Approach 2, only a little bit better

• One single set of n random numbers Ui = (Vi,Wi).
• One single set of n sample points xt(Vi,Wi) for all

parameter value t. Reweighting the sample using∫
A
1D(x) ft(x)dx =

∫
A
1D(x)

ft(x)
f R
s (x)

f R
s (x)dx.

• Importance sampling density f R
s for fs, s ∈ T.

(here in the example: f R
s := fs and s = 6)

• Weights wst(x) = ft(x)/ f R
s (x).

ft → f R
t

↘
fs → f R

s(classical: ws(x) = fs(x)/ f R
s (x)).

• MC: θ̂Ω,s(t) = 1
n

n
∑

i=1
1D(xs(Vi,Wi)) · wst(xs(Vi,Wi)).

(classical importance sampling if s = t)

• Normalisation: θ̂Ω,s divided by
n
∑

i=0
wst(xs(Vi,Wi))

• Estimate θ̂Ω,s is continuous. Good for optimising!

• Very cheap to evaluate θ̂
Ω,s(i) .

• Minima depending on s: τ∗Ω(s) = argmin
t∈T

θ̂Ω,s(t).

Approach 3, cheap but inaccurate

s(k+1) = τ∗Ω(s(k)) = argmin
t∈T

θ̂
Ω,s(k)(t), k = 1,2, . . .

Approach 4, fixed point iteration

2

