Improving the Convergence of Iterative Importance Sampling for Computing Upper and Lower Expectations

Thomas Fetz, Unit for Engineering Mathematics, University of Innsbruck, Austria

Problem statement

- **Given:** A function $h: A \subseteq \mathbb{R}^d \to \mathbb{R}$ which is **expensive** to evaluate and a family $\{f_t\}_{t \in \mathcal{T}}$ of density functions. Efficient computation of **lower expectation** $\theta_* = \min_{t \in T} \theta(t)$, optimising w.r.t. $\theta(t) = \int_A h(x) f_t(x) dx$. Aim:
- **Method:** Using Monte-Carlo simulation and importance sampling to get an estimate $\hat{\theta}$ which is cheap to evaluate in the optimising algorithm. The estimate $\hat{\theta}_*$ of θ_* is improved applying fixed point iteration. Here, we are focussed on the improvement of the convergence of the fixed point iteration reusing previous results of the iteration.

Simple numerical example for visualising

- Function *h*: $h(x) = \mathbb{1}_D(x), \quad D = (-\infty, -2] \cup [2, \infty).$
- Family of density functions: $f_t \sim N(\mu(t), \sigma^2(t))$, mean $\mu(t) = t$, variance $\sigma^2(t) = 4$, $t \in \mathfrak{T} = [-7,7]$.
- **Exact result:** $\theta_* = 0.3173$ at $t_* = 0$. (plot of θ below)

Methods for estimating function θ

Three steps of Monte Carlo simulation

- 1. Set of random numbers $\Omega_t = \{U_1, U_2, \dots, U_n\},\$ $U_i = (V_i, W_i), V_i, W_i \sim U([0, 1])$ i.i.d.
- 2. Sample points $\sim \mathcal{N}(\mu(t), \sigma^2(t))$ (Box-Muller) $x_t(U_i) = x_t(V_i, W_i) = \mu(t) + \sigma(t) \cdot \sqrt{-2\ln V_i} \cdot \cos(2\pi W_i).$
- 3. Monte Carlo simulation w.r.t. Ω_t : $\hat{\theta}_{\Omega_t}(t) = \frac{1}{n} \sum_{l=1}^{n} \mathbb{1}_D(x_t(V_i, W_i)), \text{ estimate of } \theta(t).$

Approach 1, expensive

- **Different** sets of random numbers (V_i, W_i) for each $t \in \mathcal{T}$.
- **Different** sets of *n* sample points $x_t(V_i, W_i)$ for each $t \in \mathcal{T}$.
- Resulting in a **noisy** estimate θ
 _{Ω(·)} of θ using MC.
- Expensive because of the evaluation of h for different sets of sample points. Bad for optimising.

Approach 2, only a little bit better

- One single set of *n* random numbers $U_i = (V_i, W_i)$ for all parameter values $t \in \mathfrak{T}$, $\Omega_t = \Omega$.
- **Different** sets of *n* sample points $x_t(V_i, W_i)$ for each $t \in \mathcal{T}$.
- Estimate $\hat{\theta}_{\Omega}$ of θ is now a step function.
- Again expensive and difficult to optimize.

Approach 3, cheap but inaccurate

- One single set of *n* random numbers $U_i = (V_i, W_i)$.
- One single set of *n* sample points $x_t(V_i, W_i)$ for all parameter value t. Reweighting the sample using

$$\int_{A} \mathbb{1}_{D}(x) f_{t}(x) \mathrm{d}x = \int_{A} \mathbb{1}_{D}(x) \frac{f_{t}(x)}{f_{s}^{R}(x)} f_{s}^{R}(x) \mathrm{d}x.$$

- Importance sampling density f_s^R for $f_s, s \in \mathcal{T}$. (here in the example: $f_s^R := f_s$ and s = 6) $f_t \to f_t^R$
- Weights $w_{st}(x) = f_t(x)/f_s^R(x)$. $f_s \to f_s^R$ (classical: $w_s(x) = f_s(x)/f_s^R(x)$).
- MC: $\hat{\theta}_{\Omega,s}(t) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_D(x_s(V_i, W_i)) \cdot w_{st}(x_s(V_i, W_i)).$ (classical importance sampling if s = t)
- Normalisation: $\hat{\theta}_{\Omega,s}$ divided by $\sum_{i=1}^{n} w_{st}(x_s(V_i, W_i))$
- Estimate $\hat{\theta}_{\Omega,s}$ is **continuous**. Good for optimising!
- Very cheap to evaluate $\hat{\theta}_{\Omega,s^{(i)}}$.
- Minima depending on s: $\tau_{*\Omega}(s) = \arg \min_{t \in T} \hat{\theta}_{\Omega,s}(t)$.

Approach 4, fixed point iteration

Combining previous results of iteration

Observations

- Estimates $\hat{\theta}_{\Omega,s^{(i)}}(t)$ are bad for *t* far from $s^{(i)}$ ightarrow wrong minimum at $au_{st\Omega}(s^{(i)})$ far from $s^{(i)}$ ightarrow leading away from fixed point ightarrow circling.
- Exact function ϑ is **constant** in *s*-direction.

Idea

- Weighted combination of previous results θ_{Ω,s(i)}.
- **High** weights for *t* close to $s^{(i)}$ (good estimates).
- Low weights for t far from $s^{(i)}$ (bad estimates).

New iteration scheme

 $s^{(k+1)} = \tau_{*\Omega}^{(k)} \left(s^{(k)}, \dots, s^{(1)} \right) = \arg\min_{t \in \mathcal{T}} \sum_{i=1}^{\kappa} \varphi_{s^{(i)}}^{(k)}(t) \cdot \hat{\theta}_{\Omega, s^{(i)}}(t).$ Weights $\varphi_{s^{(i)}}^{(k)}(t)$ with $\varphi_{s^{(i)}}^{(k)}(t) \ge 0$ & $\sum_{i=1}^{k} \varphi_{s^{(i)}}^{(k)}(t) = 1$.

Updating $\hat{\vartheta}_{\Omega}$ for visualising

$$\hat{\vartheta}_{\Omega}^{(k)}(s,t) = \varphi_s^{(k)}(t) \cdot \hat{\vartheta}_{\Omega}(s,t) + \sum_{i=1}^{k-1} \varphi_{s^{(i)}}^{(k)}(t) \cdot \hat{\theta}_{\Omega,s^{(i)}}(t).$$

Three approaches for weighting functions

Exponential functions

- Norm $||t s^{(i)}||_D^2 = (t s^{(i)})^T D^2 (t s^{(i)})$ measures the distance between *t* and $s^{(i)}$.
- The diagonal matrix $D = \text{diag}(d_1, \ldots, d_m)$ is used for scaling and for defining what is "near" to $s^{(i)}$.
- Weighting functions $\tilde{\varphi}_{a(i)}^{(k)}(t) = e^{-\|t-s^{(i)}\|_D^2}$ becomes smaller for increasing distance between t and $s^{(i)}$.
- Normalisation: $\varphi_{s^{(i)}}^{(k)}(t) = \tilde{\varphi}_{s^{(i)}}^{(k)}(t) / \sum_{j=1}^{k} \tilde{\varphi}_{s^{(j)}}^{(k)}(t)$. In case where $\mathfrak{T} = [\underline{t}_1, \overline{t}_1] \times \cdots \times [\underline{t}_m, \overline{t}_m]$ one could define $d_j = c/(\bar{t}_j - \underline{t}_j)$ with a constant c > 0.

Disadvantage: We have to find an appropriate D.

Effective sample size

 $\tilde{\varphi}_{{
m s}^{(k)}}^{(k)}(t) = n_{{
m eff},{
m s}^{(i)}}(t)$ which is the effective sample size $n_{\text{eff},s}(t) = \frac{(\sum_{k=1}^{n} w_{st}(x_s(V_k)))^2}{\sum_{k=1}^{n} w_{st}(x_s(V_k))^2}.$

 $n_{\text{eff},s^{(i)}}$ is equal to the sample size for $t = s^{(i)}$ (standard sampling, $\hat{\theta}_{\Omega}$) and becomes smaller for *t* far from $s^{(i)}$. Normalisation: $\varphi_{s^{(i)}}^{(k)}(t) = \tilde{\varphi}_{s^{(i)}}^{(k)}(t) / \sum_{j=1}^{k} \tilde{\varphi}_{s^{(j)}}^{(k)}(t)$. Advantage: Cheap and parameter free!

Examples: standard fixed point iterations & exact artheta

universität innsbruck

- Contour plots of $\hat{\vartheta}_{\Omega}$, iteration paths of the fixed point iterations starting at $s^{(1)} = 6$ for n = 1000, 100000, s = t ($\hat{\theta}_{\Omega}$ from above) and $\tau_{*\Omega}$.
- Bad estimates $\hat{\theta}_{\Omega,s^{(i)}}$ for *t* far from $s^{(i)} \rightarrow$ may cause **divergence**.

Examples: three combination methods

- Updated contour plots $\hat{\vartheta}_{\Omega}^{(k)}$, k = 1, 2, 3, iteration paths, s = t and $\tau_{*\Omega}$.
- Single estimates $\hat{\theta}_{\Omega,s^{(1)}}$, $\hat{\theta}_{\Omega,s^{(2)}}$, combined estimate $\hat{\theta}_{\Omega,s^{(2)}}^{(2)}$ and $\hat{\theta}_{\Omega}$.

Combination method using exponential functions

• For c = 30 we get scaling factor $d = c/(\bar{t} - t) = 30/14 = 2.14$.

Combination method using effective sample size

t.math

$$s^{(k+1)} = \tau_{*\Omega}(s^{(k)}) = \arg\min_{t \in \mathcal{T}} \hat{\theta}_{\Omega,s^{(k)}}(t), \quad k = 1, 2, \dots$$
Visualising estimates
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimates $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimate $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimate $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$:
• Exact θ and estimate $\hat{\theta}_{\Omega(.)}, \hat{\theta}_{\Omega,s=6}$ for $n = 100$.

• $\hat{\vartheta}_{\Omega}(s,t) = \hat{\theta}_{\Omega,s}(t)$, $\hat{\theta}_{\Omega}$ and minima $\tau_{*\Omega}$ for n = 1000:

Piecewise multi-linear interpolation We use basis functions $\varphi_{s^{(i)}}^{(k)}$ as in the finite element method which have the following properties: $\varphi_{{}_{e}(i)}^{(k)}(s^{(j)}) = \delta_{ij}$, no disturbance by other $\varphi_{{}_{e}(i)}^{(k)}$ at $s^{(i)}$. $\varphi_{(i)}^{(k)}(t) = 0$ outside the elements surrounding $s^{(i)}$. Weighting functions (1D version): For $\mathcal{T} = [\underline{t}, \overline{t}]$: $(s^{(i_1)}, \dots, s^{(i_k)}) = \operatorname{sort}(s^{(1)}, \dots, s^{(k)})$. The intervals $[t, s^{(i_1)}], [s^{(i_1)}, s^{(i_2)}], \dots, [s^{(i_k)}, \bar{t}]$ are the elements and the $\varphi_{s^{(i_j)}}^{(k)}$ corresponds to nodes $s^{(i_j)}$: $\frac{t-s^{(i_{j-1})}}{s^{(i_j)}-s^{(i_{j-1})}} \quad t \in [s^{(i_{j-1})}, s^{(i_j)}], \ j=2,\ldots,k,$ $\frac{s^{(i_{j+1})} - t}{s^{(i_{j+1})} - s^{(i_j)}} \quad t \in [s^{(i_j)}, s^{(i_{j+1})}], \ j = 1, \dots, k-1,$ $t \in [\underline{t}, s^{(i_1)}], \ j = 1$ $t \in [s^{(i_k)}, \bar{t}], \ j =$ otherwise Disadvantage: Difficult in higher dimensions.

Conclusion

• All three approaches lead to convergence after few iterations.

- The method with effective sample size is cheap and easy to apply.
- No new evaluations of expensive function h are needed.
- The methods are complementary to the increase of sample coverage.