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Problem statement Examples: standard fixed point iterations & exact 4

Given: A function 4 : A C R? — R which is expensive to evaluate and a family {f: }+e7 of density functions.

B universitat
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e Contour plots of dq, iteration paths of the fixed point iterations starting
Aim: Efficient computation of lower expectation 6. = min, 6(¢), optimising w.r.t. 6(¢)= [, h(x) f;(x)dx. at s() = 6 for n = 1000, 100000, s = 7 (6, from above) and 7.q.
Method: Using Monte-Carlo simulation and importance sampling to get an estimate  which is cheap to evaluate | e Bad estimates émm for ¢ far from s — may cause divergence.
in the o.pt|m|smg algorithm. The estimate 6, of 6, |§ |mprov.ed :elpplyl.ng fixed Pomt |ter:’=1t|on. Here, we are f.ocuss.ed da, n=1000, s =6 BP0, n=100000, s =6
on the improvement of the convergence of the fixed point iteration reusing previous results of the iteration.
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Simple numerical example for visualising Combining previous results of iteration : : ; =
= 0 G - I8
2| 1 i <Q
e Function 4: h(x) = ]ID()C), D= (—00, —2] U [2,00) Observations : é
exac
o Family of density functions: f; ~ N(u(t),c2(t)), _ . _ -5
mean u(t) =t¢, variance o'z(t) =4, teT=[-17,7]. o Estimates GQ,s(i) (t) are bad for 7 far from s 5 0 ST s 0 5 5 0 5 0
ini (i) (i) i i .
e Exactresult: 6, =0.3173 att, = 0. (plot of 6 below) =+ wrong minimumat z.q{s') far from s s
L ) — leading away from fixed point — circling. \ )
Methods for estimating function 6 e Exact function ¥ is constant in s-direction. Examples: three combination methods N
Three steps of Monte Carlo simulation @ o Updated contour plots ﬁg), k=1,2,3, iteration paths, s = and ..
R . . A A . . A(2) A
1 Sellof random numbers! @ = {07 Uss 2 ok, e Weighted combination of previous results 6, ). e Single estimates 0, ), 65 2, combined estimate 6, and 0.
. g,-:(:/,-,m)_, V,»,VWJJE U((EO, 1;)( I)-I)-d- S e High weights for 7 close to s (good estimates). Combination method using exponential functions
- EETIAID BRI ~ RIEI), erie SV Low weights for 7 far from s (bad estimates). , -
x(Ui) = x(Vi, Wi) = (1) + 6(¢) - /=2InV; - cos(27W;). * g s ) e For ¢ = 30 we get scaling factor d = ¢/(f —1) = 30/14 = 2.14.
3. Monte Carlo simulation w.r.t. Q;: N it i h 50 50 50
N n =1 =1 =1
bo,(1) =1 ¥ 1p(x(Vi,W;)), estimate of 6(r). SWIEIGHON SCHEIE R L
i=1 k 5
\ > k k) ¢ (k : k )
. S = 2 (s.a10) = argmin ) 0{()0)- 60, 40(0).
Approach 1, expensive . = o =gl E
i (®) ih oK) ko oK)y ‘ I s
o Different sets of random numbers (V;,W;) for each r € T. Wieights 20 () with 20 ()20 & Eiy P50 () =1 A
o Different sets of n sample points x, (V;, W;) foreachz € T. -5
0 0 - . A . . A o . 0
° Resultln.g in a noisy estimate q.) 9f 6 using MC.. Updatlng 199 for V|suaI|S|ng 5 0 5 5 0 5 5 0 5
e Expensive because of the evaluation of & for different S S S
sets of sample points. Bad for optimising. Nk k A k=1 X A
( ) 2 (5.0 = oM (1) Dals.)+ Y 08 (1) 80 (1)- & —
=1 = 4
Approach 2, only a little bit better \ J| % T
o . 2 e,
e One single set of n random numbers U; = (V;,W;) for all Three approaches for weighting functions & Lt
parameter values t € T, Q; = Q. %D —
o Different sets of n sample points x;(V;,W;) foreacht € 7. Exponential functions g e
e Estimate @ of 8 is now a step function. W =6
e Again expensive and difficult to optimize. Norm ||t —s?|[3, = (r —s)TD? (t — s)) measures the t
: distance between  and s(. b J
Approach 3, cheap but inaccurate The diagonal matrix D = diag(d,...,dy) is used for Combination method using effective sample size
q A B o (t)
« One single set of n random numbers U; = (V;, W,). scaling and for defining what is “near” to s\". 3. n=1000 92 =100 99 n=1000
7 - - = )12 e
e One single set of n sample points x,(V;,W;) for all Weighting functions (ps((';) (1) = e =15 pecomes
parameter value 7. Reweigh}ir(ig) the sample using smaller for increasing distance between ¢ and 5. -
_ 1X) R - k (k - (k z
LA[]ID(x)f,(x)dx—I{]lD(x) 7RG (x)dwx. Normalisation: q)s((i)) (t) = (Ps((i)) (/5 (ps((j)) (t). - = %2;
e Importance sampling density 7 for f;, s € 7. In case where T = [t;,71] X -+ X [t,,fm] One could define :
(here in the example: /% := fyands=6) , ¢r dj=c/(t;—t;) with a constant ¢ > 0. 0
e Weights wy, (x) = f;(x)/f%(x). N Disadvantage: We have to find an appropriate D. -5 0 5 -5 0 5 L
(classical: ws(x) = f5(x)/fR(x)). fs = fF ° °
5 n Effective sample size Py —0
e MC: (0)= £ £ 1o 90) w1 W) : n
o & - 5 S
(classical importance sampling if s = 7) (Z)S(('f)) (1) = ngy o (r) which is the effective sample size S Zf’z--;““'
~ n v — YQs=52
o Normalisation: 6q  divided by ¥ wy (x,(Vi, W;)) (X5 war (x5(VR)))* ;
’ i=0 nefr (1) = ~op > - i= o
. A . o Yooy war (x5(Vi)) iE0 e ®
e Estimate 6  is continuous. Good for optimising! ) ) ) 2 ke
' X Mg ) 1S equal to the sample size for ¢ = s) (standard W_6
e Very cheap to evaluate 6, . S :
7 . sampling, ) and becomes smaller for 7 far from (. t
e Minima depending on s: T.q(s) = argmin 6 4(¢). ®) ® b g
ar isation: =@ koW ’ T ’ ’
: = )| || Normalisation: ¢ (1) = @, (¢)/ Lj=1 0, (1) Piecewise linear interpolation .
Approach 4, fixed point iteration Advantage: Cheap and parameter free! 0 o .
95, n=1000 9%, n=1000 .
(D) = 7,6(s®) = argmin O, (1), k=1,2 - - i i i
§ QS argmm b s 1), 1250 Piecewise multi-linear interpolation
\\ )) =
; - . We use basis functions (p((? as in the finite element - ;:;
Visualising estimates y | method which have the following properties: H
. P K, (i : k ;
e Exact 6 and estimates 0, ), 0o, o 6 for n =100: ‘Ps((n) (S(’ )) = §;j, no disturbance by other <PS(<j)> at s
. 0
5 1 | T — (ps((k)) (t) = 0 outside the elements surrounding s,
= es ?ma e Oa() s s
;5 0.5 entiate zsz Weighting functi.ons ( D. version): [ -
B oL | | L et For T =[t,7]: (s®),... sty =sort(s(),... s®)), 2 05 oo
d = s= . . . . . _ < 0. 7Q,5=sl
! ! 0 paramet:r T The intervals [g,s(’lk)], [s() s@)] . [sU) 7] are the el- 2 T Zg)ziz
X X X ements and the ¢/, corresponds to nodes s(/): S -
e Jq(s,t) = q (1), O and minima 7.q for n = 1000: (é ’) £ o5 —
; t—s\ ) ()] g -y
- & (lj—l)7 (’/)7 =2,...,k, 0 2
3D plot of Da(s, ) contour plot of da(s, 1) S — 1) [s stl], j S P T
E— (ij41) — t
5F 7als) : s ! i) ()] i — _ L J
) ® ) T ) res@) @] j=1,... k-1, L )
.‘E’ g (Ps(ij) (t) -
z “ 0 i3 1 re(t,s], j=1, Conclusion N
2 2 i) T g . .
2 P 1 te s 7], j=k, e All three approaches lead to convergence after few iterations.
0 0 otherwise. e The method with effective sample size is cheap and easy to apply.
5 0 5 . — o ) i o No new evaluations of expensive function . are needed.
s Disadvantage: Difficult in higher dimensions. e The methods are complementary to the increase of sample coverage.




