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DATA UNCERTAINTY IN OPTIMIZATION

♣ Consider a generic optimization problem of the form

min
x

{f (x; ζ) : F (x; ζ) ∈ K}

• x ∈ Rn: decision vector • ζ ∈ RM : data • K ⊂ Rm: closed convex set

♠ More often than not the data ζ is uncertain – not known exactly when
problem is solved.
Sources of data uncertainty:
• part of the data is measured/estimated ⇒ estimation errors
• part of the data (e.g., future demands/prices) does not exist when

problem is solved ⇒ prediction errors
• some components of a solution cannot be implemented exactly as

computed ⇒ implementation errors which in many models can be mim-
icked by appropriate data uncertainty
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Example

Effect of data inaccuracy









Worst-case chance constraints

Nominal solution - dream and reality
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♠ With traditional modelling methodology,
• “large” data uncertainty is modelled in a stochastic fashion and

then processed via Stochastic Programming techniques

Fact: In many cases, it is difficult to specify reliably the distribution of
uncertain data and/or to process the resulting Stochastic Programming
program.

♠ The ultimate goal of Robust Optimization is to take into account data
uncertainty already at the modelling stage in order to “immunize”
solutions against uncertainty.
• In contrast to Stochastic Programming, Robust Optimization does

not assume stochastic nature of the uncertain data (although can uti-
lize, to some extent, this nature, if any).
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“NON-ADJUSTABLE” ROBUST OPTIMIZATION:
Robust Counterpart of Uncertain Problem

min
x

{f (x, ζ) : F (x, ζ) ∈ K} (U)

♣ The initial (“Non-Adjustable”) Robust Optimization paradigm (Soys-
ter ’73, B-T&N ’97–, El Ghaoui et al. ’97–, Bertsimas&Sim ’03–,...) is
based on the following tacitly accepted assumptions:

A.1. All decision variables in (U) represent “here and now” decisions
which should get specific numerical values as a result of solving the
problem and before the actual data “reveals itself”.

A.2. The uncertain data are “unknown but bounded”: one can spec-
ify an appropriate (typically, bounded) uncertainty set U ⊂ RM of pos-
sible values of the data. The decision maker is fully responsible for
consequences of the decisions to be made when, and only when, the
actual data is within this set.

A.3. The constraints in (U) are “hard” – we cannot tolerate violations
of constraints, even small ones, when the data is in U .
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min
x

{f (x, ζ) : F (x, ζ) ∈ K}

ζ ∈ U
(U)

♠ Conclusions:
• The only meaningful candidate solutions are the robust ones – those

which remain feasible whatever be a realization of the data from the
uncertainty set:

x robust feasible ⇔ F (x, ζ) ∈ K ∀ζ ∈ U

• “Robust optimal” solution to be used is a robust solution with the
smallest possible guaranteed value of the objective, that is, the optimal
solution of the optimization problem

min
x,t

{t : f (x, ζ) ≤ t, F (x, ζ) ∈ K ∀ζ ∈ U} (RC)

called the Robust Counterpart of (U).
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Robust Linear Programming
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We focus on:

(a + Bp)T x ≤ β, ∀p ∈ U,

where p ∈ R
m is the uncertain vector, B ∈ R

n×m, and U the uncertainty region.

Uncertainty region U Robust Counterpart Tractability

Box ‖p‖∞ ≤ 1 aT x + ‖BT x‖1 ≤ β LP

Ball ‖p‖2 ≤ 1 aT x + ‖BT x‖2 ≤ β CQP

Polyhedral Cp + d ≥ 0






aT x + dT y ≤ β

CT y = −BT x

y ≥ 0

LP

Cone (closed, convex, pointed) Cp + d ∈ K






aT x + dT y ≤ β

CT y = −BT x

y ∈ K∗

Conic Opt.



Robust Solution of Optimization Affected

by Uncertain Probabilities



Robust Solution of Optimization Problem Affected by Uncertain Probabil-

ities

Consider the robust linear constraint

(a+Bp)Tx ≤ b , x ∈ IRn, a ∈ IRn, B ∈ IRn×m (0)

where p ∈ IRm is an uncertain probability vector:

p ∈ ∆m = {p ∈ IRm | pT ` = 1, p ≥ 0} ` = (1, 1, . . . , 1)T .

The RC of (0), w.r.t. an uncertainty set U is

(a+Bp)Tx ≤ b , ∀ p ∈ U .

How to construct U so it has the following properties:

(a) U is based on empirical probability estimates (q) obtained from historical

data.

(b) U is related to a statistical confidence region (based on asymptotic theory).

(c) U is such that the RC (2) is tractable.



A family of U ’s that has these properties is

Up = {p ∈ ∆m | Iq(p, q) ≤ ρp}

where Iφ(p, q) =
∑m

i=1 qiφ
(
pi
qi

)
is the so-called φ-divergence (= distance) be-

tween two probability vectors p and q. The function φ(t) is convex for t ≥ 0

with φ(1) = 0, 0φ(a/0) = a limt→∞ φ(t)/t for a � 0 and 0φ(0/0) = 0.

Given some φ, the adjoint of φ is defined for t ≥ 0 as:

φ̃(t) = t(φ)(1/t)

which in itself is an admissible divergence function and the following relation

holds:

Iφ̃(p, q) = Iφ(q, p) .

The RC (2) with U = Up will turn out to be given in terms of the conjugate

function of φ:

φ∗(s) =
∑
t≥0
{st− φ(t)}, .

A list of φ-divergence with their conjugates and adjoints is given in the follow-

ing table.



Divergence φ(t) φ(t), t ≥ 0a Iφ(p, q) φ∗(s) φ̃(t) RCP

Kullback-Leibler φkl(t) t log t− t+ 1
∑

pi log
(
pi
qi

)
es − 1 φb(t) S.C.

Burg entropy φb(t) − log t+ t− 1
∑

qi log
(
qi
pi

)
− log(1− s), s < 1 φkl(t) S.C.

J-divergence φj(t) (t− 1) log t
∑

(pi − qi) log
(
pi
qi

)
no closed form φj(t) S.C.

χ2-distance φc(t)
1
t
(t− 1)2

∑ (pi−qi)2

pi
2− 2

√
1− s, s < 1 φmc(t) CQP

Modified χ2-distance φmc(t) (t− 1)2
∑ (pi−qi)

2

qi

{
−1, s < −2

s+ s2/4, s ≥ −2
φc(t) CQP

Hellinger distance φh(t) (
√
t− 1)2

∑
(
√
pi −

√
qi)

2 s
1−s

, s < 1 φh(t) CQP

χ divergence of order θ > 1 φθ
ca(t) |t− 1|θ ∑

qi|1− pi
qi
|θ s+ (θ − 1)

(
|s|
θ

) θ
θ−1

t1−θφθ
ca(t) CQP

Variation distance φv(t) |t− 1| ∑ |pi − qi|
{
−1, s ≤ −1

s, −1 ≤ s ≤ 1
φv(t) LP

Cressie and Read φθ
cr(t)

1−θ+θt−tθ

θ(1−θ) , θ 6= 0, 1b 1
θ(1−θ)(1−

∑
pθi q

1−θ
i )

1
θ
(1− s(1− θ))

θ
θ−1 − 1

θ

s < 1
1−θ

φ1−θ
cr (t) CQP

Table 2: Some φ-divergence examples, with their conjugates and adjoints. The last column indicates the tractability of (1); S.C. means
“admits self-concordant barrier”.

aφ(t) = ∞, for t < 0
bNote that φ1

cr(t) = φb(t) and φ0
cr(t) = φkl(t).
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The next result (based on L. Pardo’s Statistical Inference Based on Divergence

Measures, 2006) establishes the statistical interpretation of the uncertainty setup.

Let qN = (q1,N , q2,N , . . . , qm,N)T be an m-dimensional vector of sampled fre-

quencies of m scenarios based on the random sample, Z1, . . . , ZN . Assume

the φ is a divergence function, twice differential in the neighborhood of 1, with

φ′′(1) > 0.

Theorem 1

(i) The statistics 2N
φ′′(1) Iφ(p, qN) has asymptotically (N → ∞) a x2m−1 distri-

bution.

(ii) The uncertainty set

Up =

{
p ∈ ∆m : Iφ(p, qN) ≤ ρφ =

φ′′(1)

2N
x2m−1, 1−α

}

(where x2m−1, 1−α is the (1− α) percentile of the x2m−1 distribution)

is an (1− α) confidence set for p.



Robust Counterpart with φ-Divergence Uncertainty

Consider the following robust linear constraint:

(a+Bp)Tx ≤ β , ∀ p ∈ U , (1)

where x ∈ IRn is the optimization vector, a ∈ IRn, B ∈ IRn×m, and β ∈ IR are

given parameters, p ∈ IRm is the uncertain parameter, and

U = {p ∈ IRm | p ≥ 0, Cp ≤ d, Iφ(p, q) ≤ ρ} , (2)

where q ∈ IRm (with q ≥ 0), ρ > 0, d ∈ IRk, and C ∈ IRk×m are given.

Theorem 2 A vector x ∈ IRn satisfies (1) with uncertainty region U given by

(2) such that q ∈ U if and only if there exist η ∈ IRk and λ ∈ IR such that

(x, λ, η) satisfies
aTx+ dTη + ρλ+ λ

∑
i qiφ

∗
(
bTi x−cTi η

λ

)
≤ β

η ≥ 0k, λ ≥ 0 ,

(3)

where bi and ci are the i-th columns of B and C, respectively, and φ∗ is the

conjugate function of φ (with 0φ∗
(
s
0

)
:= 0 if s ≤ 0 and 0φ∗

(
s
0

)
:= +∞ if

s > 0).



Numerical Illustration: Multi-item Newsvendor Example

As a numerical illustration, we consider a multi-item newsvendor problem. This

problem deals with optimizing the inventory of several items which can only be

sold in one period. Due to the uncertain demand, this newsvendor can face both

unsold items or unmet demand. The unsold items will return a loss, and unmet

demand generates a cost of lost sales. For each item j, we define the purchase

cost cj, the selling price vj, the salvage value of unsold items sj, and the cost of

lost sales lj. Furthermore, we denote γ for the budget that is available for the

purchase of the items.

Item (j) 1 2 3 4 5 6 7 8 9 10 11 12

c 4 5 6 4 5 6 4 5 6 4 5 6

v 6 8 9 5 9 8 6 8 9 6.5 7 8

s 2 2.5 1.5 1.5 2.5 2 2.5 1.5 2 2 1.5 1

l 4 3 5 4 3.5 4.5 3.5 3 5 3.5 3 5

q
(j)
1,N 0.375 0.250 0.375 0.127 0.958 0.158 0.485 0.142 0.679 0.392 0.171 0.046

q
(j)
2,N 0.375 0.250 0.250 0.786 0.007 0.813 0.472 0.658 0.079 0.351 0.484 0.231

q
(j)
3,N 0.250 0.500 0.375 0.087 0.035 0.029 0.043 0.200 0.242 0.257 0.345 0.723

Table 1. Parameter values for the multi-item newsvendor example



We assume that demand for all items is a random variable that can take on m

values, denoted as di, i = 1, . . . ,m. We denote p(j)i for the unknown probability

that the demand for item j equals di, and we let the uncertainty region for p(j) =

(p
(j)
1 , . . . , p

(j)
m )T be given by

U (j) :=
{
p(j) ∈ IRm | p(j) ≥ 0, (p(j))T e = 1, Iφ

(
p(j), q

(j)
N

)
≤ ρ
}
, (6)

where q(j)N represents the sample-based estimated probability distribution for

item j.

Denote by Qj the order quantity for item j. We consider a multi-item newsven-

dor problem in which he maximizes the expected profit on the least profitable

item:

max
Q

min
j

∑
i

p
(j)
i r̄j(Qj, i)

where r̄j(Qj, i) = vj min(di, Qj) + sj(Qj − di)+ − lj(di − Qj)
+ − cQj. The

robust version of this problem can be stated as:

max ‖z‖∞

s.t.− cjQj +
∑
i

p
(j)
i fi,j(Qj) ≥ zj, ∀ j, ∀ p(j) ∈ U (j)

∑
j

cjQj ≤ γ ,

with

fi,j(Qj) = vj min{di, Qj}+ sj max{0, qj − di} − lj max{0, di −Qj} .



From our previous result, the RC is given by

max ‖z‖∞

s.t.− cjQj − ηj − λjρ− λj
∑
i

q
(j)
i,Nφ

∗
(
−fi,j(Qj)− ηj

λj

)
≥ zj, ∀ j

∑
j

cjQj ≤ γ

λ ≥ 0 .

Our numerical results apply to the case with n = 12 different items, and m = 3

scenarios for the demand for each item: low demand (4), medium demand (8),

and high demand (10), denoted as d1 = 4, d2 = 8, and d3 = 10, respectively.

The parameter values of the revenue functions, as well as the values of q(j)i,N , are

given in Table 1. Furthermore, the budget is set at γ = 1000.



We solve the RCP for the Cressie and Read φ-divergence function with θ = 0.5.

For both φ-divergence functions, we consider the case where ρ = ρa is the

test statistic and the case where ρ = ρc is the test statistic 2N
φ′′(1) Iφ(p, qN). In

each case, the confidence level is set at α = 0.05, and we determine the robust

optimal solutions for different sample sizes N = 10, 20, . . . , 1000.

Using the solutions of the RCP problems and the solution of the non-robust

problem (i.e., assuming that QN is the true probability vector), we make several

comparisons. First, we compare the performance of the robust versus the non-

robust solutions for the different values of the sample size N .

To make comparisons, we proceed as follows. First, we sample 10,000 hy-

pothetically true p-vectors. Next, for each sampled probability vector p, we

calculate the value of the objective function for the non-robust as well as for the

robust optimal solutions. We then compare the performance of the different so-

lutions by determining the mean and the range (i.e., the minimum and the max-

imum value) of the objective values corresponding to the sampled p-vectors.

The p-vectors are sampled such that approximately 95% of the sample satisfies

Iφme
(p, qN) ≤ ρ̄ := ρφme

, where φme denotes the modified χ2-divergence. The

results show that the mean return of the objective values for the robust solution

is higher than the mean for the non-robust solution. Moreover, the dispersion

of objective values for the robust solution is significantly smaller than the range

of objective values for the non-robust solution. In particular, the robust solution

avoids substantial losses.
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Figure 1: Cressie-Read for θ = 0.5, and ρcφ,
and the 1-norm.
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Figure 2: Cressie-Read for θ = 0.5, and ρcφ,
and the ∞-norm.

dispersion of objective values for the robust solution is significantly smaller than the range of
objective values for the non-robust solution for the ∞-norm. In particular, the robust solution
avoids substantial losses.

Concerning the effect of N , the effect of using ρcφ versus ρaφ, and the differences between the two
φ-divergence measures, we observe the following:

Effect of N . Because 95 percent of the sampled p-vectors needs to satisfy Iφmc
(p, qN ) ≤ ρ, and

because ρ is decreasing in N , the range of the expected returns becomes smaller as N increases.
However, because 5 percent of the sampled p-vectors does not need to satisfy Iφmc

(p, qN ) ≤ ρ,
the range does not converge to a single value.

Effect of ρcφ versus ρaφ. With regard to the differences between the robust solutions in case ρaφ
is used (i.e., the uncertainty region is based on the approximate test statistic) and when ρcφ is
used (i.e., the uncertainty region is based on the corrected test statistic), we observe that there
are significant differences only for relatively small values for N . This occurs of course since the
effect of the correction becomes smaller as N increases.

Comparison of different φ-divergence measures. The different φ-divergence measures lead
to different optimal quantities, but the structure of the solutions is similar. The mean expected
utility as well as the range of the expected utilities over the sampled p-vectors is similar for the
two φ-divergence measures.

7 Concluding remarks

In this paper we have shown that the robust counterpart of linear and nonlinear optimization
problems with uncertainty regions defined by φ-divergence distance measures can be reformu-
lated as tractable optimization problems. Thus, these uncertainty regions are useful alternatives
to uncertainty regions considered in the existing literature, particularly so when the uncertainty
is associated with probabilities. In this latter case, we have shown that uncertainty regions based
on φ-divergence test statistics have a natural interpretation in terms of statistical confidence sets.
This allows for an approach that is fully data-driven.

Our approach also has other applications. For example, φ-divergence distances can be directly

23



Basic theory

Distributionally Robust Optimization

Two types of constraints:

worst-case expected feasibility constraints:

sup
P∈P

EPf (x, z) ≤ 0, (WC-EF)

worst-case chance constraints:

sup
P∈P

P (f (x, z) > 0) ≤ ε. (WC-CC)

(WC-EF) is used to construct safe approximations of (WC-CC).

Postek et al. (2015) 5 / 34



Scarf’s (1958) Newsvendor Problem

The newsvendor buys x newspapers with cost $c each (0 < c < 1).

He sells them with price $1. The demand for newspapers is d,

a random variable with partially known probability (℘ ∈ P ).

The DRO is then

max
x

sup
℘∈P

E℘ min(x, d)− cx

Scarf assumed that

P = {℘ : E℘d = µ , E℘(d− µ)2 = σ2}

and obtained an exact solution to the inner sup problem.



Basic theory

Ambiguity set P

Ambiguity set P should be such that it is possible to obtain good,
computationally tractable upper bounds on

sup
P∈P

EPf (x, z)

Most frequently, P consists of P with known:

mean

(co)variance matrix

possibly, higher order moment information

Major works: Scarf (1958), Dupačová (1977), Birge and Wets (1987),
Birge and Dulá (1991), Gallego (1992), Gallego, Ryan & Simchi-Levi
(2001), Delage and Ye (2010), Wiesemann et al. (2014) and many
others...

Postek et al. (2015) 6 / 34



Basic theory

Forgotten result of Ben-Tal and Hochman (1972)

An exact upper bound when the dispersion measure is the mean absolute
deviation (MAD).

Theorem
Assume that a one-dimensional random variable z has support included in
[a, b] and its mean and mean absolute deviation are µ and d:

P = {P : supp(z) ⊆ [a, b], EPz = µ, EP|z − µ| = d} .

Then, for any convex function g : R→ R it holds that

sup
P∈P

EPg(z) = p1g(a) + p2g(µ) + p3g(b),

where p1 = d
2(µ−a) , p3 = d

2(b−µ) , p2 = 1− p1 − p3.

Postek et al. (2015) 9 / 34



Basic theory

Generalization to multiple dimensions

The result of Ben-Tal and Hochman (1972) generalizes to
multidimensional z with independent components.

P = {P : supp(zi ) ⊆ [ai , bi ], EPzi = µi , EP|zi − µi | = di , zi ⊥ zj} .

Independence implies that the worst-case distribution is a product of the
per-component worst-case distributions.

For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1,2,3}nz

(
nz∏
i=1

piαi

)
g(τ1α1

, . . . , τnzαnz
)

where piαi
and τ iαi

depend only on ai , bi , µi , and di (not on g(·)).

Postek et al. (2015) 10 / 34



Basic theory

Lower bound result

Ben-Tal and Hochman (1972) provide also an exact formula for the lower
bound on the expectation if additionally, it is known that P(z ≥ µ) = β:

Pβ = {P : P ∈ P, P(z ≥ µ) = β} .

Then, for any convex function g : R→ R it holds that

inf
P∈Pβ

EPg(z) = βg

(
µ+

d

2β

)
+ (1− β)g

(
µ− d

2(1− β)

)
.

Postek et al. (2015) 11 / 34



Chance Constraints

p(w) ≡ Prob

{
w0 +

d∑
`=1

z`w` ≥ 0

}
≥ 1− ε (C)

• In general, (C) can be difficult to process:

– The feasible set X of (C) can be nonconvex, which makes

it problematic to optimize under the constraint.

– Even when convex,X can be “computationally intractable”:

Let z ∼ Uniform([0.1]d). In this case, X is con-

vex (Lagoa et al., 2005); however, unless P = NP ,

there is no algorithm capable to compute p(w) within

accuracy δ in time polynomial in the size of the (ra-

tional) data w and in ln(1/δ) (L. Khachiyan, 1989).

• When (C) is difficult to process “as it is”, one can look for

a safe tractable approximation of (C) — a computationally

tractable convex set Uε such that Uε ⊂ X ≡ {w : p(w) ≥ ε}.



Probabilistic Guarantees via RO

f0(x) +

d∑
l=1

zlfl(x) ≤ 0 . (1)

Assumption

z1, z2, . . . , zd independent rv’s

zl ∼ Pl ∈ Pl (compact all prob. dist. in Pl has common support

= [−1, 1]).

Definition A vector x satisfying, for a given 0 < z < 1:

Pr{f0(x) + Σzlfl(x) ≤ 0} ≥ 1− ε (chance constraint) (2)

provides a safe approximation of (1).

Challenge Find uncertainty set for z, Uε s.t. the Robust Counter-

part of (1):

f0(x) + Σzlfl(x) ≤ 0, ∀ z ∈ Uε (3)

is a safe approximation of (1), i.e., every x satisfying (3) satisfies
the CC (2).



THEOREM

Consider the uncertainty set:

Uε = B ∩ (M + E)

where B = {u ∈ IRd | ‖u‖∞ ≤ 1}

M = {u | µ−l ≤ ul ≤ µ+l , l = 1, . . . , d} (1)

E = {u | Σu2l /σ2l ≤ 2 log(1/ε)}

and where µ−l , µ+l and σl are such that

Al(y) ≤ max(µ−l y, µ
+
l y) +

σ2l
2
y2l , ∀ l = 1, . . . , d

and

Al(y) = max
Pl∈Pl

log

(∫
exp(ys)dPl(s)

)
.

Then, a vector x satisfying

f0(x) + Σzjfj(x) ≤ 0, ∀ z ∈ Uε

satisfies the cc inequality:

Pr{f0(x) + Σzjfj(x) ≤ 0} ≥ 1− ε



Worst-case chance constraints

Safe approximations

As such, (WC-CC) is intractable and we need a safe approximation - a
computationally tractable set S of deterministic constraints such that

x feasible for S ⇒ x feasible for (WC-CC)

How to construct safe approximations?
The crucial step is a construction of an upper bound on the moment
generating function (MGF) of z (Ben-Tal et al. (2009)):

sup
P∈P

EP exp(wTz).

.
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Recall: For each convex g(·) it holds that

sup
P∈P

EPg(z) =
∑

α∈{1.2.3}n

(
n∏
i=1

piαi

)
g
(
τ 1
α1, . . . , τ

nz
αnz

)
where piαi and τ iαi depend only on ai, bi, µi, and di (not on g(·)).

This formula has 3n terms!

However:

sup
P∈P

log
(
EP exp(wTz)

)
= sup

P∈P
log
(
EP
(
ew1z1+···+wnzn

))
= sup

P∈P
log

(
EP

n∏
i=1

ewizi

)
= due to zi’s being independent

= sup
P∈P

log

(
n∏
i=1

E ewizi

)
= sup

P∈P

n∑
i=1

(logE ewizi) .

So here we need to apply the (B-H) upper (lower) bound separately

to each on the n one-variable convex functions E ewizi!



Worst-case chance constraints

Setting

We assume w.l.o.g. that supp(zi ) ∈ [−1, 1], EPzi = 0 and EP|zi − 0| = d .

Consider the (WC-CC):

sup
P∈P

P
(
aT (z)x > b(z)

)
≤ ε,

where

[a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi [a
i ; bi ].
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Worst-case chance constraints

MGF with our distributional assumptions

We know exactly the worst-case value of the MGF (not just an upper
bound):

sup
P∈P

EP exp(wTz) =
nz∏
i=1

sup
P∈P

EP exp(wizi )

=
nz∏
i=1

(
d

2
exp(−wi ) + 1− d +

d

2
exp(wi )

)

=
nz∏
i=1

(d cosh(wi ) + 1− d)

Using this fact, we are able to construct three safe approximations of
increasing tightness and increasing complexity.
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Worst-case chance constraints

An example of a safe approximation

Theorem
Let

[a(z); b(z)] = [a0; b0] +
nz∑
i=1

zi [a
i ; bi ].

If there exists α > 0 such that (x, α) satisfies the constraint

(a0)Tx− b0 + α log

(
nz∑
i=1

(
di cosh

(
(ai )Tx− bi

α

)
+ 1− di

))
+α log(1/ε) ≤ 0,

then x satisfies the (WC-CC): sup
P∈P

P
(
aT (z)x > b(z)

)
≤ ε.

The approximating constraint is convex in (x, α)!
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Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

1 We consider an optimization problem with 40 circular antennas.

2 Each antenna has its diagram Di (φ) - a plot of intensity of signal sent
to different directions.

3 The diagram of the set of 40 antennas is the sum of their diagrams .

D(φ) =
n∑

i=1

xiDi (φ)

4 To the i-th antenna we can send a different amount of power xi .

5 Objective: Set the xi ’s in such a way that the diagram has the
desired shape.
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Application - antenna array optimization

Consider a circular antenna:

X

Y

Z

φ

ri

Energy sent in angle φ is
characterized by diagram

Diagram of a single antenna:

Di (φ) =
1

2

2π∫
0

cos

(
2πi

40
cos(φ) cos(θ)

)
dθ

Diagram of n antennas

D(φ) =
n∑

i=1

xiDi (φ)

xi - power assigned to antenna i

Objective: construct D(φ) as close as possible to the desired D∗(φ) using the
antennas available.



Worst-case chance constraints

Antenna array (Ben-Tal and Nemirovski (2002))

Problem conditions:

for 77◦ < φ ≤ 90◦ the diagram is nearly uniform:

0.9 ≤
n∑

i=1

xiDi (φ) ≤ 1, 77◦ < φ ≤ 90◦

for 70◦ < φ ≤ 77◦ the diagram is bounded:

−1 ≤
n∑

i=1

xiDi (φ) ≤ 1, 70◦ < φ ≤ 77◦

we minimize the maximum absolute diagram value over 0◦ < φ ≤ 70◦:

min max
0◦<φ≤70◦

∣∣∣∣∣
n∑

i=1

xiDi (φ)

∣∣∣∣∣
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Worst-case chance constraints

Desired diagram graphically
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Worst-case chance constraints

Implementation error

Typically, decisions xi suffer from implementation error zi :

xi 7→ x̃i = (1 + ρzi )xi

We want each constraint to hold with probability at least 1− ε for all
P ∈ P, for example:

P

(
n∑

i=1

xi (1 + ρzi )Di (φ) ≤ 1

)
≥ 1− ε, 77◦ < φ ≤ 90◦, ∀P ∈ P

Two solutions:

nominal: no implementation error

robust: ρ = 0.001 and ε = 0.001.
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Worst-case chance constraints

Nominal solution - dream and reality
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Worst-case chance constraints

Robust solution - dream and reality
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(1) a(ζ)T x ≤ b(ζ)

a(ζ) = a0 +
L∑

`=1

ζ`a
`, b(ζ) = b0 +

L∑

`=1

ζ`b
`

ζ1, . . . , ζL i.i.d., E(ζ`) = 0 , |ζ`| ≤ 1

(CC)ε Probζ

(
a(ζ)T x ≤ b(ζ)

) ≥ 1− ε

Let UΩ =
{
ζ ∈ IRL | ‖ζ‖2 ≤ Ω

}
.

Consider the RC of (1) w.r.t. UΩ:

a(ζ)T x ≤ b(ζ) ∀ ζ ∈ UΩ

which we already know is equivalent to

(RC)Ω (a0)T x + Ω
√∑L

`=1 ((a`)T x− b`)
2 ≤ b0

Theorem 1 If x solves (RC)Ω with Ω ≥
√

2 log(1/ε),
then x solves (CC)ε

OR :





x solves (RC)Ω then x solves

(CC)ε with ε < e−Ω2/2

e.g., Ω = 7.44, 1− ε = 1− 10−12.
1



Illustration: Single-Period Portfolio Selection

There are 200 assets. Asset #200 (“money in the bank”) has yearly

return r200 = 1.05 and zero variability. The yearly returns r`,

` = 1, . . . , 199 of the remaining assets are independent random variables

taking values in the segments [µ` − σ`, µ` + σ`] with expected values µ`;

here

µ` = 1.05 + 0.3
(200 − `)

199
, σ` = 0.05 + 0.6

(200 − `)

199
, ` = 1, . . . , 199 .

The goal is to distribute $1 between the assets in order to maximize the

return of the resulting portfolio, the required risk level being ε = 0.5%.

We want to solve the uncertain LO problem

max
y,t

{

t :

199∑

t=1

r`y` + r200y200 − t ≥ 0,

200∑

`=0

y` = 1, y` ≥ 0 ∀ `

}

,

where y` is the capital to be invested into asset #`.



The uncertain data are the returns r`, ` = 1, . . . , 199; their natural

parameterization is

r` = µ` + σ`ζ` ,

where ζ`, ` = 1, . . . , 199, are independent random perturbations with

zero mean varying in the segments [−1, 1]. Setting x = [y;−t] ∈ IR201,

the problem becomes






minimize x201

subject to

(a)
[

a0 +
∑199

`=1 ζ`a
`
]T

x −
[

b0 +
∑199

`=1 ζ`b
`
]

≤ 0

(b)
∑200

j=1 x` = 1

(c) x` ≥ 0, ` = 1, . . . , 200

(4)

where

a0 = [−µ1;−µ2; . . . ;−µ199;−r200;−1]; a` = σ` · [0`−1,1; 1; 0201−`,1], ` = 1, . . . , 199;

b` = 0, ` = 0, 1, . . . , 199 .



The only uncertain constraint in the problem is the linear inequality

(a). We consider 3 perturbation sets along with the associated robust

counterparts of problem (4).

1. Box RC which ignores the information on the stochastic nature of

the perturbations affecting the uncertain inequality and uses the

only fact that these perturbations vary in [−1, 1]. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1} ;

2. Ball-Box with the safety parameter Ω =
√

2 ln(1/ε) = 3.255, which

ensures that the optimal solution of the associated RC (a CQ prob.)

satisfies (a) with probability at least 1 − ε = 0.995. The underlying

perturbation set Z for (a) is {ζ : ‖ζ‖∞ ≤ 1}, ‖ζ‖2 ≤ 3.255} ;

 



Results

Box RC. The associated RC is the LP

max
y,t







t :

199∑

`=1

(µ` − σ`)y` + 1.05y200 ≥ t

200∑

`=1

y` = 1, y ≥ 0







;

as it should be expected, this is nothing but the instance of our

uncertain problem corresponding to the worst possible values

r` = µ` − σ`, ` = 1, . . . , 199, of the uncertain returns. Since these

values are less than the guaranteed return for money, the robust

optimal solution prescribes to keep our initial capital in the bank with

guaranteed yearly return 1.05.



Ball-Box RC. The associated RC is the conic quadratic problem

max
y,z,w,t







t :

199∑

`=1

(µ`y` + 1.05y200 −
199∑

`=1

|z`| − 3.255

√
√
√
√

199∑

`=1

w2
` ≥ t

z` + w` = y`, ` = 1, . . . , 199,

200∑

`=1

y` = 1, y ≥ 0







.

The robust optimal value is 1.1200, meaning 12.0% profit with risk as

low as ε = 0.5%.




