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Epistemic irrelevance on sets of desirable gambles

Serafı́n Moral

Departamento de Ciencias de la Computación e IA, Universidad de Granada, 18071
Granada, Spain

E-mail: smc@decsai.ugr.es

This paper studies graphoid properties for epistemic irrelevance in sets of desirable
gambles. For that aim, the basic operations of conditioning and marginalization are
expressed in terms of variables. Then, it is shown that epistemic irrelevance is an
asymmetric graphoid. The intersection property is verified in probability theory when the
global probability distribution is positive in all the values. Here it is always verified due to
the handling of zero probabilities in sets of gambles. An asymmetrical D-separation
principle is also presented, by which this type of independence relationships can be
represented in directed acyclic graphs.

Keywords: Desirable gambles, imprecise probabilities, conditioning, epistemic indepen-
dence, epistemic irrelevance

1. Introduction

Coherent sets of desirable gambles [15, 16] are a very general model for
imprecise probability. They are more informative than convex sets of probability
measures as they can provide the behavior conditioned to events of probability zero.
Despite its generality, this model has a simple mathematical formulation, and it allows
for the expression of such concepts as conditioning, combination and marginalization
in a very simple way. Perhaps, its main drawback may be the difficulty of elicitation
from an expert due to the implications of considering as desirable or not the gambles
in the frontier.

Independence is one of the key concepts for every theory of uncertainty. In
imprecise probability this concept is richer than in the classical theory of probability,
and it allows a number of different interpretations [1, 3]. In the model of desirable sets
of gambles the most natural definition is epistemic irrelevance: adding information
about one event, then the information about the other does not change. As in credal
sets [3, 14], this concept is not symmetrical. If we impose irrelevance in both
directions we obtain epistemic independence.

This paper tries to investigate the graphoid properties for epistemic irrelevance in
sets of desirable gambles, extending the work by [3] in which this concept was studied
for credal sets of probabilities. As in that setting, symmetry is not verified. However, if
we consider the epistemic independence (symmetrical irrelevance), then contraction is

Annals of Mathematics and Artificial Intelligence (2005) 45: 197–214 # Springer 2005
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Abstract
Coherent reasoning under uncertainty can be represented in a very general manner by

coherent sets of desirable gambles. In a context that does not allow for indecision, this leads

to an approach that is mathematically equivalent to working with coherent conditional

probabilities. If we do allow for indecision, this leads to a more general foundation for coherent

(imprecise-)probabilistic inference. In this framework, and for a given finite category set,

coherent predictive inference under exchangeability can be represented using Bernstein

coherent cones of multivariate polynomials on the simplex generated by this category set.

This is a powerful generalisation of de Finetti’s Representation Theorem allowing for both

imprecision and indecision.

We define an inference system as a map that associates a Bernstein coherent cone of

polynomials with every finite category set. Many inference principles encountered in the

literature can then be interpreted, and represented mathematically, as restrictions on such

maps. We discuss, as particular examples, two important inference principles: representation

insensitivity—a strengthened version of Walley’s representation invariance—and specificity.

We show that there is an infinity of inference systems that satisfy these two principles,

amongst which we discuss in particular the skeptically cautious inference system, the inference

systems corresponding to (a modified version of) Walley and Bernard’s Imprecise Dirichlet

Multinomial Models (IDMM), the skeptical IDMM inference systems, and the Haldane

inference system. We also prove that the latter produces the same posterior inferences as

would be obtained using Haldane’s improper prior, implying that there is an infinity of

proper priors that produce the same coherent posterior inferences as Haldane’s improper one.

Finally, we impose an additional inference principle that allows us to characterise uniquely

the immediate predictions for the IDMM inference systems.

1. Introduction

This paper deals with predictive inference for categorical variables. We are therefore concerned
with a (possibly infinite) sequence of variables Xn that assume values in some finite set of
categories A. After having observed a number ň of them, and having found that, say X1 = x1,
X2 = x2, . . . , Xň = xň, we consider some subject’s belief model for the next n̂ variables
Xň+1, . . . Xň+n̂. In the probabilistic tradition—and we want to build on this tradition in the

©2015 AI Access Foundation. All rights reserved.
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Abstract We discuss several features of coherent choice functions—where the
admissible options in a decision problem are exactly those that maximize expected
utility for some probability/utility pair in fixed set S of probability/utility pairs. In this
paper we consider, primarily, normal form decision problems under uncertainty—
where only the probability component of S is indeterminate and utility for two privi-
leged outcomes is determinate. Coherent choice distinguishes between each pair of sets
of probabilities regardless the “shape” or “connectedness” of the sets of probabilities.
We axiomatize the theory of choice functions and show these axioms are necessary for
coherence. The axioms are sufficient for coherence using a set of probability/almost-
state-independent utility pairs. We give sufficient conditions when a choice function
satisfying our axioms is represented by a set of probability/state-independent utility
pairs with a common utility.

Keywords Choice functions · Coherence · !-Maximin · Maximality · Uncertainty ·
State-independent utility

1 Introduction

In this paper we continue our study of coherent choice functions, which we started in
our (Kadane et al. 2004) “Rubinesque” theory of decision. Let O be a set of feasible

T. Seidenfeld (B) · M. J. Schervish · J. B. Kadane
Department of Philosophy, Carnegie Mellon University, Baker Hall, 135, Pittsburgh, PA 15213, USA
e-mail: teddy@stat.cmu.edu
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Abstract

Choice functions constitute a simple, direct and
very general mathematical framework for modelling
choice under uncertainty. In particular, they are able
to represent the set-valued choices that appear in
imprecise-probabilistic decision making. We provide
these choice functions with a clear interpretation in
terms of desirability, use this interpretation to derive
a set of basic coherence axioms, and show that this
notion of coherence leads to a representation in terms
of sets of strict preference orders. By imposing ad-
ditional properties such as totality, the mixing prop-
erty and Archimedeanity, we obtain representation in
terms of sets of strict total orders, lexicographic prob-
ability systems, coherent lower previsions or linear
previsions.
Keywords: choice functions, coherence, desirability,
representation, non-binary choice models.

1. Introduction

Choice functions provide an elegant unifying mathematical
framework for studying set-valued choice: when presented
with a set of options, they generally return a subset of them.
If this subset is a singleton, it provides a unique optimal
choice or decision. But if the answer contains multiple
options, these are incomparable and no decision is made
between them. Such set-valued choices are a typical feature
of decision criteria based on imprecise-probabilistic uncer-
tainy models, which aim to make reliable decisions in the
face of severe uncertainty. Maximality and E-admissibility
are well-known examples. When working with a choice
function, however, it is immaterial whether it is based on
such a decision criterion. The primitive objects on this ap-
proach are simply the set-valued choices themselves, and
the choice function that represents all these choices serves
as an uncertainty model in and by itself.

The seminal work by Seidenfeld et al. [17] has shown
that a strong advantage of working with choice functions is
that they allow us to impose axioms on choices, aimed at
characterising what it means for choices to be rational and
internally consistent. This is also what we want to do here,
but we believe our angle of approach to be novel and unique:
rather than think of choice intuitively, we provide it with a

concrete interpretation in terms of desirability [4, 8, 9, 25]
or binary preference [15]. Another important feature of
our approach is that we consider a very general setting,
where the options form an abstract real vector space; horse
lotteries and gambles correspond to special cases.

The basic structure of our paper is as follows. We start
in Section 2 by introducing choice functions and our in-
terpretation for them. Next, in Section 3, we develop an
equivalent way of describing these choice functions: sets of
desirable option sets. We use our interpretation to suggest
and motivate a number of rationality, or coherence, axioms
for such sets of desirable option sets, and show in Section 4
what are the corresponding coherence axioms for choice (or
rejection) functions. Section 5 deals with the special case
of binary choice, and its relation to the theory of sets of
desirable options [4, 8, 9, 25] and binary preference. This
is important because our main result in Section 6 shows
that any coherent choice model can be represented in terms
of sets of such binary choice models. In the remaining
Sections 7–9, we consider additional axioms or properties,
such as totality, the mixing property, and an Archimedean
property, and prove corresponding representation results.
This includes representations in terms of sets of strict total
orders, sets of lexicographic probability systems, sets of
coherent lower previsions and sets of linear previsions.

Proofs have been relegated to the appendix of an exten-
ded arXiv version [7].

2. Choice Functions and Their

Interpretation

A choice function C is a set-valued operator on sets of
options. In particular, for any set of options A, the cor-
responding value of C is a subset C(A) of A. The op-
tions themselves are typically actions amongst which a
subject wishes to choose. We here follow a very general
approach where these options constitute an abstract real
vector space V provided with a—so-called background—
vector ordering � and a strict version �. The elements u

of V are called options and V is therefore called the op-

tion space. We let V�0 := {u 2 V : u � 0}. The purpose
of a choice function is to represent our subject’s choices
between such options.

© 2019 J. De Bock & G. de Cooman.
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Abstract

We prove weak and strong laws of large numbers for coherent lower previsions, where the lower prevision of a random variable
is given a behavioural interpretation as a subject’s supremum acceptable price for buying it. Our laws are a consequence of the
rationality criterion of coherence, and they can be proven under assumptions that are surprisingly weak when compared to the
standard formulation of the laws in more classical approaches to probability theory.
© 2007 Elsevier B.V. All rights reserved.

MSC: 60A99; 60F05; 60F15

Keywords: Imprecise probabilities; Coherent lower previsions; Law of large numbers; Epistemic irrelevance; 2-Monotone capacities

1. Introduction

In order to set the stage for this paper, let us briefly recall a simple derivation for Bernoulli’s weak law of large
numbers. Consider N successive tosses of the same coin. The outcome for the kth toss is denoted by Xk, k = 1, . . . , N .
This is a random variable, taking values in the set {−1, 1}, where −1 stands for ‘tails’ and +1 for ‘heads’. We denote
by p the probability for any toss to result in ‘heads’. The common expected value ! of the outcomes Xk is then given
by ! = 2p − 1, and their common variance "2 by "2 = 4p(1 − p)!1. We are interested in the sample mean, which is
the random variable SN = (1/N)

∑N
k=1Xk whose expectation is !. If we make the extra assumption that the successive

outcomes Xk are independent, then the variance "2
N of SN is given by "2

N = "2/N !1/N , and if we use Chebychev’s
inequality, we find for any # > 0 that the probability that |SN − !| > # is bounded as follows:

P({|SN − !| > #})! "2
N

#2 ! 1
N#2 . (1)

This tells us that for any # > 0, the probability P({|SN − !| > #}) tends to zero as the number of observations N goes to
infinity, and we say that the sample mean SN converges in probability to the expectation !. If we let Yk = (1 + Xk)/2,

! Supported by Research Grant G.0139.01 of the Flemish Fund for Scientific Research (FWO), and by MCYT, Projects MTM2004-01269,
TSI2004-06801-C04-01.

∗ Corresponding author.
E-mail addresses: gert.decooman@ugent.be (G. De Cooman), enrique.miranda@urjc.es (E. Miranda).

0378-3758/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2007.10.020
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Abstract

We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities,
are used: Walley’s behavioural theory of imprecise probabilities, and Shafer and Vovk’s game-theoretic account of probability.
We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence
between them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other.
Our approach leads to an account of probability trees and random processes in the framework of Walley’s theory. We indicate how
our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an
interesting and quite general version of the weak law of large numbers.
 2008 Elsevier B.V. All rights reserved.

Keywords: Game-theoretic probability; Imprecise probabilities; Coherence; Conglomerability; Event tree; Probability tree; Imprecise probability
tree; Lower prevision; Immediate prediction; Prequential Principle; Law of large numbers; Hoeffding’s inequality; Markov chain; Random
process

1. Introduction

In recent years, we have witnessed the growth of a number of theories of uncertainty, where imprecise (lower and
upper) probabilities and previsions, rather than precise (or point-valued) probabilities and previsions, have a central
part. Here we consider two of them, Glenn Shafer and Vladimir Vovk’s game-theoretic account of probability [29],
which is introduced in Section 2, and Peter Walley’s behavioural theory [33], outlined in Section 3. These seem to have
a rather different interpretation, and they certainly have been influenced by different schools of thought: Walley follows
the tradition of Frank Ramsey [22], Bruno de Finetti [11] and Peter Williams [39] in trying to establish a rational model
for a subject’s beliefs in terms of her behaviour. Shafer and Vovk follow an approach that has many other influences
as well, and is strongly coloured by ideas about gambling systems and martingales. They use Cournot’s Principle
to interpret lower and upper probabilities (see [28]; and [29, Chapter 2] for a nice historical overview), whereas on
Walley’s approach, lower and upper probabilities are defined in terms of a subject’s betting rates.

* Corresponding author.
E-mail addresses: gert.decooman@UGent.be (G. de Cooman), filip.hermans@UGent.be (F. Hermans).

0004-3702/$ – see front matter  2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2008.03.001
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In recent years, we have witnessed the growth of a number of theories of uncertainty, where imprecise (lower and
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which is introduced in Section 2, and Peter Walley’s behavioural theory [33], outlined in Section 3. These seem to have
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the tradition of Frank Ramsey [22], Bruno de Finetti [11] and Peter Williams [39] in trying to establish a rational model
for a subject’s beliefs in terms of her behaviour. Shafer and Vovk follow an approach that has many other influences
as well, and is strongly coloured by ideas about gambling systems and martingales. They use Cournot’s Principle
to interpret lower and upper probabilities (see [28]; and [29, Chapter 2] for a nice historical overview), whereas on
Walley’s approach, lower and upper probabilities are defined in terms of a subject’s betting rates.
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An imprecise probability tree can be seen as an infinity of compatible
precise probability trees: choose in each node s a probability mass
function ms from the set Ms.
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We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities,
are used: Walley’s behavioural theory of imprecise probabilities, and Shafer and Vovk’s game-theoretic account of probability.
We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence
between them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other.
Our approach leads to an account of probability trees and random processes in the framework of Walley’s theory. We indicate how
our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an
interesting and quite general version of the weak law of large numbers.
 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, we have witnessed the growth of a number of theories of uncertainty, where imprecise (lower and
upper) probabilities and previsions, rather than precise (or point-valued) probabilities and previsions, have a central
part. Here we consider two of them, Glenn Shafer and Vladimir Vovk’s game-theoretic account of probability [29],
which is introduced in Section 2, and Peter Walley’s behavioural theory [33], outlined in Section 3. These seem to have
a rather different interpretation, and they certainly have been influenced by different schools of thought: Walley follows
the tradition of Frank Ramsey [22], Bruno de Finetti [11] and Peter Williams [39] in trying to establish a rational model
for a subject’s beliefs in terms of her behaviour. Shafer and Vovk follow an approach that has many other influences
as well, and is strongly coloured by ideas about gambling systems and martingales. They use Cournot’s Principle
to interpret lower and upper probabilities (see [28]; and [29, Chapter 2] for a nice historical overview), whereas on
Walley’s approach, lower and upper probabilities are defined in terms of a subject’s betting rates.
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The Law of Iterated Expectation

Theorem (Law of Iterated Expectation)
Suppose we know E(g|s,x) for all x 2 X , then we can calculate E(g|s)
by backwards recursion using the local model Es:

E(g|s) = Es|{z}
local

(E(g|s, ·)) = max
ms2Ms

Â
x2X

ms(x)E(g|s,x).

s

(s,0)

(s,1)

MsE(g|s) = Es(E(g|s, ·))

E(g|s,1)

E(g|s,0)

The complexity of calculating the E(g|s), as a function of n, is therefore
essentially the same as in the precise case!
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Summary. A Markov chain model in generalised settings of interval probabilities is pre-
sented. Instead of the usual assumption of constant transitional probability matrix, we assume
that at each step a transitional matrix is chosen from a set of matrices that corresponds to a
structure of an interval probability matrix. We set up the model and show how to obtain inter-
vals corresponding to sets of distributions at consecutive steps. We also state the problem of
invariant distributions and examine possible approaches to their estimation in terms of convex
sets of distributions, and in a special case in terms of interval probabilities.

1 Introduction

Interval probabilities present a generalised probabilistic model where classical sin-
gle valued probabilities of events are replaced by intervals. In our paper we refer
to Weichselberger’s theory [4]; although, several other models also allow interval
interpretation of probabilities.

An approach to involve interval probabilities to the theory of Markov chains
was proposed by Kozine and Utkin [1]. They assume a model where transitional
probability matrix is constant but unknown. Instead of that, only intervals belonging
to each transitional probability are known.

In this paper we attempt to relax this model. We do this in two directions. First,
we omit the assumption of the transitional probability matrix being constant, and
second, instead of only allowing intervals to belong to single atoms, we allow them
to belong to all subsets.

Allowing non-constant transitional probability matrix makes Markov chain model
capable of modeling real situations where in general it is not reasonable to expect ex-
actly the same transitional probabilities at each step. They can, however, be expected
to belong to some set of transitional probabilities. In interval probability theory such
sets are usually obtained as structures of interval probabilities. Our assumption is
thus that transitional probability at each step is an arbitrary member of a set of tran-
sitional probability matrices generated by an interval probability matrix.

D. Škulj: Finite Discrete Time Markov Chains with Interval Probabilities, Advances in Soft Computing
6, 299–306 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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IMPRECISE MARKOV CHAINS AND
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When the initial and transition probabilities of a finite Markov chain in discrete time
are not well known, we should perform a sensitivity analysis. This can be done by
considering as basic uncertainty models the so-called credal sets that these probabil-
ities are known or believed to belong to and by allowing the probabilities to vary over
such sets. This leads to the definition of an imprecise Markov chain. We show that
the time evolution of such a system can be studied very efficiently using so-called
lower and upper expectations, which are equivalent mathematical representations of
credal sets. We also study how the inferred credal set about the state at time n evolves
as n → ∞: under quite unrestrictive conditions, it converges to a uniquely invariant
credal set, regardless of the credal set given for the initial state. This leads to a non-
trivial generalization of the classical Perron–Frobenius theorem to imprecise Markov
chains.

1. INTRODUCTION

One convenient way to model uncertain dynamical systems is to describe them as
Markov chains. These have been studied in great detail, and their properties are well
known. However, in many practical situations, it remains a challenge to accurately
identify the transition probabilities in the Markov chain: The available information
about physical systems is often imprecise and uncertain. Describing a real-life dynam-
ical system as a Markov chain will therefore often involve unwarranted precision and
might lead to conclusions not supported by the available information.

For this reason, it seems quite useful to perform probabilistic robustness
studies, or sensitivity analyses, for Markov chains. This is especially relevant in
decision-making applications. Many researchers in Markov Chain Decision Making

© 2009 Cambridge University Press 0269-9648/09 $25.00 597

Imprecise Markov chains: definition
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An imprecise Markov chain can be seen as an infinity of probability
trees.

For each x 2 X , the local transition model Q(·|x) corresponds to lower
and upper expectation operators:

E(f |x) = min{Ep(f ) : p 2 Q(·|x)}
E(f |x) = max{Ep(f ) : p 2 Q(·|x)}.
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Continuous-time Markov chains are mathematical models that are used to describe 
the state-evolution of dynamical systems under stochastic uncertainty, and have found 
widespread applications in various fields. In order to make these models computationally 
tractable, they rely on a number of assumptions that—as is well known—may not be 
realistic for the domain of application; in particular, the ability to provide exact numerical 
parameter assessments, and the applicability of time-homogeneity and the eponymous 
Markov property. In this work, we extend these models to imprecise continuous-time Markov 
chains (ICTMC’s), which are a robust generalisation that relaxes these assumptions while 
remaining computationally tractable.
More technically, an ICTMC is a set of “precise” continuous-time finite-state stochastic 
processes, and rather than computing expected values of functions, we seek to compute 
lower expectations, which are tight lower bounds on the expectations that correspond to 
such a set of “precise” models. Note that, in contrast to e.g. Bayesian methods, all the 
elements of such a set are treated on equal grounds; we do not consider a distribution 
over this set. Together with the conjugate notion of upper expectation, the bounds that we 
provide can then be intuitively interpreted as providing best- and worst-case scenarios 
with respect to all the models in our set of stochastic processes.
The first part of this paper develops a formalism for describing continuous-time finite-state 
stochastic processes that does not require the aforementioned simplifying assumptions. 
Next, this formalism is used to characterise ICTMC’s and to investigate their properties. The 
concept of lower expectation is then given an alternative operator-theoretic characterisation, 
by means of a lower transition operator, and the properties of this operator are investigated 
as well. Finally, we use this lower transition operator to derive tractable algorithms (with 
polynomial runtime complexity w.r.t. the maximum numerical error) for computing the 
lower expectation of functions that depend on the state at any finite number of time 
points.

 2017 Elsevier Inc. All rights reserved.

1. Introduction

Continuous-time Markov chains are mathematical models that can describe the behaviour of dynamical systems under 
stochastic uncertainty. In particular, they describe the stochastic evolution of such a system through a discrete state space 
and over a continuous time-dimension. This class of models has found widespread applications in various fields, includ-
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First Steps Towards an Imprecise Poisson Process
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Abstract

The Poisson process is the most elementary
continuous-time stochastic process that models a
stream of repeating events. It is uniquely character-
ised by a single parameter called the rate. Instead of a
single value for this rate, we here consider a rate inter-
val and let it characterise two nested sets of stochastic
processes. We call these two sets of stochastic process
imprecise Poisson processes, explain why this is jus-
tified, and study the corresponding lower and upper
(conditional) expectations. Besides a general theoret-
ical framework, we also provide practical methods to
compute lower and upper (conditional) expectations
of functions that depend on the number of events at a
single point in time.
Keywords: Poisson process, counting process,
continuous-time Markov chain, imprecision

1. Introduction

The Poisson process is arguably one of the most basic
stochastic processes. At the core of this model is our sub-
ject, who is interested in something specific that occurs
repeatedly over time, where time is assumed to be continu-
ous. For instance, our subject could be interested in the
arrival of a customer to a queue, to give an example from
queueing theory. For the sake of brevity, we will call such a
specific occurrence a Poisson-event,1 whence our subject is
interested in a stream of Poisson-events. The time instants
at which subsequent Poisson-events occur are uncertain to
our subject, hence the need for a probabilistic model. This
set-up is not exclusive to queueing theory; it is also used
in renewal theory and reliability theory, to name but a few
applications.

There is a plethora of alternative but essentially equi-
valent characterisations of this Poisson process. Some of
the more well-known and basic characterisations are as the
limit of the Bernoulli process [5, Chapter VI, Sections 5 and
6] or as a sequence of mutually independent and exponen-
tially distributed inter-Poisson-event times [6, Chapter 5,
Section 3.A]. An alternative way to look at the Poisson

1. We use the term “Poisson-event” rather than just “event” to avoid
confusion with the standard usage of event in probability theory,
where event refers to a subset of the sample space; we are indebted
to an anonymous reviewer for pointing out this potential confusion,
and to Gert de Cooman for suggesting the adopted terminology.

process is as a random dispersion of points in some gen-
eral space—that need not be the real number line—see for
instance [1, Sections 2.1 and 2.2] or [8, Chapter 2]. More
theoretically involved characterisations that are relevant to
our set-up are as a counting process or as a continuous-
time Markov chain, see for example [5, Chapter XVII, Sec-
tion 2], [7, Section 1], [10, Section 2.4], [12, Section 2.1]
or [13, Section 3].

Broadly speaking, these characterisations all make the
same three assumptions: (i) orderliness, in the sense that
the probability that two or more Poisson-events occur at
the same time is zero; (ii) independence, more specific-
ally the absence of after-effects or Markovianity; and (iii)
homogeneity. It is essentially well-known that these three
assumptions imply the existence of a parameter called the
rate, and that this rate uniquely characterises the Poisson
process. We here weaken the three aforementioned assump-
tions. First and foremost, we get rid of the implicit assump-
tion that our subject’s beliefs can be accurately modelled
by a single stochastic process; instead, we assume that her
beliefs only allow us to consider a set of stochastic pro-
cesses. Specifically, we consider a rate interval instead of
a precise value for the rate, and examine two distinct sets:
(i) the set of all Poisson processes whose rate belongs to
this rate interval; and (ii) the set of all processes that are
orderly and “consistent” with the rate interval. We then
define lower and upper conditional expectations as the in-
fimum and supremum of the conditional expectations with
respect to the stochastic processes in these respective sets.
Aside from this general theoretical framework, we focus
on computing the lower and upper expectation of functions
that depend on the number of occurred Poisson-events at a
single future time point. For the set of Poisson processes,
we show that this requires the solution of a one-parameter
optimisation problem; for the second set, we show that this
can be computed using backwards recursion. Furthermore,
we argue that both sets can be justifiably called imprecise
Poisson processes: imprecise because their lower and upper
expectations are not equal, and Poisson because their lower
and upper expectations satisfy imprecise versions of the
defining properties of the (precise) Poisson process. The
interested reader can find proofs for all our results in the
Appendix of the extended pre-print of this contribution [4],
which is available on arXiv.

© 2019 A. Erreygers & J. De Bock.
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We justify and discuss expressions for joint lower and upper expectations in imprecise 
probability trees, in terms of the sub- and supermartingales that can be associated with 
such trees. These imprecise probability trees can be seen as discrete-time stochastic 
processes with finite state sets and transition probabilities that are imprecise, in the sense 
that they are only known to belong to some convex closed set of probability measures. We 
derive various properties for their joint lower and upper expectations, and in particular a 
law of iterated expectations. We then focus on the special case of imprecise Markov chains, 
investigate their Markov and stationarity properties, and use these, by way of an example, 
to derive a system of non-linear equations for lower and upper expected transition and 
return times. Most importantly, we prove a game-theoretic version of the strong law of 
large numbers for submartingale differences in imprecise probability trees, and use this to 
derive point-wise ergodic theorems for imprecise Markov chains.

 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Ref. [3], De Cooman and Hermans made a first attempt at laying the foundations for a theory of discrete-event (and 
discrete-time) stochastic processes that are governed by sets of, rather than single, probability measures. They showed 
how this can be done by connecting Walley’s [23] theory of coherent lower previsions with ideas and results from Shafer 
and Vovk’s [17] game-theoretic approach to probability theory. In later papers, De Cooman et al. [7] applied these ideas 
to finite-state discrete-time Markov chains, inspired by the work of Hartfiel [11]. They showed how to perform efficient 
inferences in, and proved a Perron–Frobenius-like theorem for, so-called imprecise Markov chains, which are finite-state 
discrete-time Markov chains whose transition probabilities are imprecise, in the sense that they are only known to belong 
to a convex closed set of probability measures—typically due to partial assessments involving probabilistic inequalities. This 
work was later refined and extended by Hermans and De Cooman [12] and Škulj and Hable [22].

The Perron–Frobenius-like theorems in these papers give equivalent necessary and sufficient conditions for the un-
certainty model—a set of probabilities—about the state Xn to converge, for n → +∞, to an uncertainty model that is 
independent of the uncertainty model for the initial state X1.

In Markov chains with ‘precise’ transition probabilities, this convergence behaviour is sufficient for a point-wise ergodic 
theorem to hold, namely that:

* Corresponding author.
E-mail addresses: Gert.deCooman@UGent.be (G. de Cooman), Jasper.DeBock@UGent.be (J. De Bock), Stavros.Lopatatzidis@UGent.be (S. Lopatatzidis).
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Abstract
We use the martingale-theoretic approach of game-theoretic probability to incorporate imprecision
into the study of randomness. In particular, we define a notion of computable randomness asso-
ciated with interval, rather than precise, forecasting systems, and study its properties. The richer
mathematical structure that thus arises lets us better understand and place existing results for the
precise limit. When we focus on constant interval forecasts, we find that every infinite sequence of
zeroes and ones has an associated filter of intervals with respect to which it is computably random.
It may happen that none of these intervals is precise, which justifies the title of this paper. We
illustrate this by showing that computable randomness associated with non-stationary precise fore-
casting systems can be captured by a stationary interval forecast, which must then be less precise:
a gain in model simplicity is thus paid for by a loss in precision.
Keywords: computable randomness; imprecise probabilities; game-theoretic probability; interval
forecast; supermartingale; computability.

1. Introduction

This paper documents the first steps in our attempt to incorporate indecision and imprecision into
the study of randomness. Consider a infinite sequence w = (z1, . . . ,zn, . . .) of zeroes and ones; when
do we call it random? There are many notions of randomness, and many of them have a number of
equivalent definitions (Ambos-Spies and Kucera, 2000; Bienvenu et al., 2009). We focus here on
computable randomness, mainly because its focus on computability—rather than, say, the weaker
lower semicomputability—has allowed us in this first attempt to keep the mathematical nitpicking
at arm’s length. Randomness of a sequence w is typically associated with a probability measure
on the sample space of all infinite sequences, or—what is equivalent—with a forecasting system
g that associates with each finite sequence of outcomes (x1, . . . ,xn) the (conditional) expectation
g(x1, . . . ,xn) for the next (as yet unknown) outcome Xn+1. The sequence w is then called comput-
ably random when it passes a (countable) number of computable tests of randomness, where the
collection of randomness tests depends of the forecasting system g . An alternative but equivalent
definition, going back to Ville (1939), sees each forecast g(x1, . . . ,xn) as a fair price for—and there-
fore a commitment to bet on—the as yet unknown next outcome Xn+1. The sequence w is then
computably random when there is no computable strategy for getting infinitely rich by exploiting
the bets made available by the forecasting system g along the sequence, without borrowing. Tech-
nically speaking, all computable non-negative supermartingales should remain bounded on w , and
the forecasting system g determines what a supermartingale is.

It is this last, martingale-theoretic approach which seems to lend itself most easily to allowing
for imprecision in the forecasts, and therefore in the definition of randomness. As we explain in Sec-
tions 2 and 3, an ‘imprecise’ forecasting system g associates with each finite sequence of outcomes
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