A New Class of Multivariate Prior Distributions with an Application to Reliability Engineering

Suárez-Llorens, A.² Joint with: Ruggeri, F.¹, Sánchez-Sánchez, M., Sordo, M. A.²

¹CNR-IMATI Milano ²Departamento de Estadística e Investigación Operativa Universidad de Cádiz

11th International Symposium on Imprecise Probabilities: Theories and Applications ISIPTA2019, 3-6 July (2019), Ghent (Belgium)

Bayesian framework

- Let *X* be the underlying observation with PDF $f_{\theta}(x)$.
- θ represents the unknown parameter.
- Θ the set of states, $\theta \in \Theta \subseteq \mathbb{R}^n$, $n \in \mathbb{N}$, $n \ge 1$.
- Let π be the specific prior state of knowledge over Θ with PDF $\pi(\theta)$.
- Let π_x be the posterior state of knowledge after observing data, x, with PDF given by

$$\pi_{\mathbf{x}}(\boldsymbol{\theta}) = \frac{l(\boldsymbol{\theta} \mid \mathbf{x})\pi(\boldsymbol{\theta})}{m_{\pi}(\mathbf{x})},$$

where $l(\theta \mid \mathbf{x})$ and $m_{\pi}(\mathbf{x})$ denote the likelihood function and the marginal density, respectively.

• **OBJECTIVE**: To make inference in some quantity of interest by using π_x .

• □ ▶ • • □ ▶ • □ ▶

The classical criticism

Why a unique prior? A Bayesian analysis is robust if it does not depend sensitively on the initial assumptions -Bayesian sensitivity-.

• A solution. Beliefs will be modelled by a particular class of priors Γ .

э

HEY, YOU!!

I hope to see you and tell you all details!!!

< 同 > < 三 >