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A FIRST GLIMPSE TO CSDD

‣ CSDD = Credal version of Probabilistic Sentential 
Decision Diagrams 

▸ so, what are PSDDs? 

▸ actually, what are SDDs?



TOY EXAMPLE (FROM KISA ET AL. 2014)

100 STUDENTS ENROLLING IN 4 CLASSES: LOGIC (L), KNOWLEDGE 
REPRESENTATION (K), PROBABILITY (P), AI (A)

▸ 16 joint states 

▸ Three logical constraints

L K P A
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

(P ∨ L), (A → P), (K → A ∨ L)



TOY EXAMPLE (FROM KISA ET AL. 2014)

▸ 16 joint states 

▸ Three logical constraints

L K P A
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

ϕ := (P ∨ L) ∧ (A → P) ∧ (K → A ∨ L)

100 STUDENTS ENROLLING IN 4 CLASSES: LOGIC (L), KNOWLEDGE 
REPRESENTATION (K), PROBABILITY (P), AI (A)



TOY EXAMPLE (FROM KISA ET AL. 2014)

▸ 16 joint states 

▸ Three logical constraints 

▸ 7 states not satisfying the 
logical constraints (hence 
never observed)

L K P A
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

ϕ := (P ∨ L) ∧ (A → P) ∧ (K → A ∨ L)

100 STUDENTS ENROLLING IN 4 CLASSES: LOGIC (L), KNOWLEDGE 
REPRESENTATION (K), PROBABILITY (P), AI (A)



TOY EXAMPLE (FROM KISA ET AL. 2014)

▸ 16 joint states 

▸ Three logical constraints 

▸ 7 states not satisfying the 
logical constraints (hence 
never observed) 

▸ 1 state logically possible but 
never observed

L K P A
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
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ϕ := (P ∨ L) ∧ (A → P) ∧ (K → A ∨ L)
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MODELING CONSTRAINTS WITH CIRCUITS: SDD’S (DARWICHE 2011)
▸ A Sentential Decision Diagram  representing      is a “deterministic” logic circuit  

▸ take a subset of the variables, form a partition of the tautology, e.g., 

▸   

▸ Proceed recursively…

ϕ
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MODELING CONSTRAINTS WITH CIRCUITS: SDD’S (DARWICHE 2011)

(¬L ∧ K⋁L ∧ ⊥ )⋀ (P ∧ A⋁¬P ∧ ⊥ )

(L ∧ ⊤ ⋁¬L ∧ ⊥ )⋀ (¬P ∧ ¬A⋁P ∧ ⊤ )

(¬L ∧ ¬K⋁L ∧ ⊥ )⋀ (P ∧ ⊤ ⋁¬P ∧ ⊥ )

∨
∨

= ϕ

Paired boxes: AND gates
Decision nodes: OR gates
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CONSTRAINTS FIRST, DATA AFTER: PSDD

MODELING DATA + CONSTRAINTS WITH CIRCUITS: PSDD’S (KISA, 2014)
▸ A Probabilistic Sentential Decision Diagrams (PSDDs) for.     is a 

parametrized SDD:  

▸ Parameters learned from data         

▸ Inducing a joint probability 

▸ context-specific independences wrt       derived from the structure 

▸ Logically impossible events have zero probability:

ℙ(A, L, P, K )

ℙ(x) > 0 ↔ x ⊧ ϕ

ℙ

ϕ

ℙ(P |L)

ℙ(L ∧ ¬K )
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DEFINING CSDD’S

CREDAL VERSION OF PSDD’S: REPLACE PMF’S WITH CS’S
ϕ▸ Credal Sentential Decision Diagrams (CSDDs) for  

▸ Syntax: CS attached to each decision node and to each terminal node 

▸ Semantics: collection of consistent PSDDs 

▸ PSDD induces joint P,  CSDD induces joint CS (“Strong extension”)

⊤
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Marginal  queries: 

Given evidence e, calculate   

  

   

  

ℙ(e) = min
ℙ(X)∈𝕂(X)

ℙ(e)

Conditional queries: 

   

  Given available evidence e and 
queried variabile, calculate   

    

   
ℙ(x |e) = min

ℙ(X)∈𝕂(X)

ℙ(x, e)
ℙ(e)
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Marginal  queries:  

‣ Bottom-up propagation of LP 
task’s results 

‣ Coefficients of each LP task are 
computed in the lower level 

‣ Feasible regions are the local 
CSs

Conditional queries: 

‣ Decisional version of original task 

‣ Bottom-up propagation of LP task’s 
results 

‣ Coefficients of each LP task are 
computed in the lower level, 
depending on evidence 

‣ Feasible regions are the local CSs

CSDD’S INFERENCE

Needs singly connected topology
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Credal Sentential Decision Diagrams (CSDDs)
Alessandro Antonucci, Alessandro Facchini, Lilith Mattei

{alessandro, alessandro.facchini, lilith}@idsia.ch

A NEW CLASS OF (CREDAL) GRAPHICAL MODELS
• Bayesian nets as classical (precise) probabilistic graphical models (BNs)

• With imprecise probabilities? Credal networks (CNs, Cozman, 2000)

• With deep structure (and tractable inference)?
Sum-product networks (SPNs, Poon & Domingos, 2011)

• With deep structure and imprecise probabilities?
Credal sum-product networks (CSPNs, Mauá et al., 2017)

• With deep structure and embedding logical constraints?
Probabilistic sentential decision diagrams (PSDDs, Kisa et al., 2014)

• Deep structure, imprecise probabilities and logical constraints?
Credal sentential decision diagrams (CSDDs, this paper)

TOY EXAMPLE: CLASSES ENROLLMENT

• Data about 100 students in four classes

• Logic, Knowledge, Probability and
Artificial Intelligence

• Logical constraints for classes:
f := (P _ L) ^ (A ! P) ^ (K ! A _ L)

• Out of 24 = 16 joint configurations,
only eight in the data set
seven are logically impossible,
one possible but observed)

• Robust learning of a model over (L,K,P,A)?

• Consistent with the logical constraints f?

• The solution is a CSSD!

L K P A #

0 0 0 0 0

0 0 0 1 0

0 0 1 0 6

0 0 1 1 54

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 10

1 0 0 0 5

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 13

1 1 0 1 0

1 1 1 0 8

1 1 1 1 3

FROM SDDS TO CSDDS (THROUGH PSDDS)

• Logical skeleton? f as a circuit alternating OR and AND gates

• This is a sentential decision diagram, (SDD, Choi & Darwiche, 2013)

• Probabilistic model? Probability mass functions annotating
the OR gates of the SDD (PSDDs)

• PSDD is a joint probability mass function consistent with the constraints

P(L, K, P, A) : P(l, k, p, a) = 0 iff (l, k, p, a) 6|= f

• CSDD? Credal version of PSDD: credal sets instead of mass functions

• Credal sets on OR gates and terminal nodes >
• Semantics: all PSDDs with parameters consistent with the local credal sets

• Strong extension K(L, K, P, A) as the joint credal set of
all the joint mass functions induced by the consistent PSDDs

• CSDD Inference? Lower/upper bounds wrt the strong extension

• Base theorem: for each z: P(z) > 0 iff z |= f and P(z) = 0 iff z 6|= f

• Learning CSDD? Parameters are conditional probabilities,
Imprecise Dirichlet Model to learn local (conditional) credal sets

• Data scarcity issue on the leaves.justifies imprecise approach!

MARGINAL QUERIES
• Circuit traversal from leaves in re-

verse topological order

• Every time a decision node is pro-
cessed, a LP task whose feasible
region are the local credal sets of
the node should be solved.

• Analogous to Mauá et al. (2017)
for CSPNs, with additionally sup-
port to logical constraints

CONDITIONAL QUERIES
• Conditional queries solved by generalized Bayes’ rule (GBR)

• Associated decision problem is deciding whether or not,
for a given µ 2 [0, 1]: P(x|e) > µ

• As P(x|e) + P(¬x|e) = 1 for each P(X) 2 Kr(X),
and assuming that P(e) > 0, this corresponds to:
minP(X)2Kr(X) [(1 � µ)P(x, e)� µP(¬x, e)] > 0

• Recursive formulation (for singly connected circuits):
min[q1,...,qk ]2Kr(P) Âk

i=1 p(pi) s(si) qi > 0

• where p(pi) is equal to minPpi (Z)2Kpi (Z)
⇥
(1 � µ)Ppi (x, el)� µPpi (¬x, el)

⇤

• and s(si) is equal to

(
Psi (er) if p(pi) < 0
Psi

(er) otherwise.

• Circuit traversal
from leaves (as
for marginal
queries)

• LP tasks on deci-
sion nodes whose
coefficients are
computed with
marginal queries

• Bracketing
scheme to solve
GBR

• Again analogous
to Mauá et al.
(2017) result for
CSPNs

CONCLUSIONS & OUTLOOKS
• CSDDs as a new tool for sensitivity analysis in PSDD

• Fast robust marginalisation and conditioning
(but conditioning works for singly connected circuits only)

• Complexity results and approximated algorithm are needed

• CNs vs. CSDDs? Credal classification with CSDDs?
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