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WHAT ARE CSDD’S ?

A FIRST GLIMPSE TO CSDD

» CSDD = Credal version of Probabilistic Sentential
Decision Diagrams

» so, what are PSDDs?

» actually, what are SDDs?
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MODELING CONSTRAINTS WITH CIRCUITS: SDD'S (DARWICHE 2011)

» A Sentential Decision Diagram representing ¢ is a “"deterministic” logic circuit

» take a subset of the variables, form a partition of the tautology, e.g.,

T=(-LAK)VLV(-LA-=K)

‘/\
/[ 1)\ / 1\ /1)
] 7\ 7
SLAK L L AK
PAA Pv-A P

» (—IL/\K)/\(P/\A)\/L/\(PV—-A)\/(—IL/\—IK)/\P=gb

» Proceed recursively...
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Decision nodes: OR gates
Paired boxes: AND gates /
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CONSTRAINTS FIRST, DATA AFTER: PSDD

MODELING DATA + CONSTRAINTS WITH CIRCUITS: PSDD'S (KISA, 2014)

» A Probabilistic Sentential Decision Diagrams (PSDDs) for. ¢ is a
parametrized SDD:

» Parameters learned from data

-L|k| |L|L| [|P|A| [-P|L| [L|K:0.8| |-L|L| |-P|-A| |P|A:0.25| |-L|-K| [L|L| |P|A:0.9] |-P|L]

» Inducing a joint probability P(A, L, P, K)
» context-specificindependences wrt [P derived from the structure

» Logically impossible events have zero probability: P(x) >0 < xE ¢
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DEFINING CSDD’S

CREDAL VERSION OF PSDD'S: REPLACE PMF'S WITH CS'S

» Credal Sentential Decision Diagrams (CSDDs) for gb

10 11
ETTRETIE.

30 31
ETTRETIE.

P|A: -P|L

24 25 3 4 54 55

» Syntax: CS attached to each decision node and to each terminal node T

» Semantics: collection of consistent PSDDs

» PSDD induces joint P, CSDD induces joint CS (“Strong extension”)
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CSDD'S INFERENCE

Marginal queries:

Given evidence e, calculate

Ple)= min P(e)
P(X)eK(X)

Conditional queries:

Given available evidence e and
queried variabile, calculate

P(x,e)

P(x|e) = min
PX)ekX) P(e)
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TWO POLYTIME ALGORITHMS
» Adaptation of CSPNs algorithms (Maua et al.) to CSDDs:

Marginal queries: Conditional queries:

Bottom-up propagation of LP Decisional version of original task

task’s results
Bottom-up propagation of LP task’s

Coefficients of each LP task are results

computed in the lower level
Coefficients of each LP task are

Feasible regions are the local computed in the lower level,
CSs depending on evidence

Feasible regions are the local CSs

* Needs singly connected topology
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A NEW CLASS OF (CREDAL) GRAPHICAL MODELS TOY EXAMPLE: CLASSES ENROLLMENT

e Bayesian nets as classical (precise) probabilistic graphical models (BNs)

e With imprecise probabilities? Credal networks (CNs, Cozman, 2000) o Data about 100 students in four classes © © 0 0 0

. . o 0 0 1 o

o With deep structure (and tractable lnference?? o Logic, Knowledge, Probability and 0 0 1o s

Sum-product networks (SPNs, Poon & Domingos, 2011) Artificial Intelligence N,

e With deep structure and imprecise probabilit}os? o Logical constraints for classes: [ S

Credal sum-product networks (CSPNs, Maua et al., 2017) ¢:=(PVL)A(A—=P)A(K—= AVL) 0o 1 0 1 0

o With deep structure and embedding logical constraints? o Out of 2¢ = 16 joint configurations, e

Probabilistic sentential decision diagrams (PSDDs, Kisa et al., 2014) only eight in the data set oottt

e Deep structure, imprecise probabilities and logical constraints? seven are logically impossible, “ g g : 0

Credal sentential decision diagrams (CSDDs, this paper) one possible but observed) oo o1 0 1

e Robust learning of a model over (L,K,P,A)? 10 1 1 o

FROM SDDs TO CSDDs (THROUGH PSDDS) e Consistent with the logical constraints ¢? o0t
e The solution is a CSSD!

MARGINAL QUERIES

o Circuit traversal from leaves in re- Rigorithm 2 Lower probability of evidence

verse topological order ir"wm CSDD, c\;d«-ncc e
for n - N......1 do
e Every time a decision node is pro- Z(n) <0

cessed, a LP task whose feasible "L EUILNE
e Logical skeleton? ¢ as a circuit alternating OR and AND gates region are the local credal sets of
o This is a sentential decision diagram, (SDD, Choi & Darwiche, 2013) the node should be solved. ((pir51)%_1, Kn(P)) < n (decision node)

o (n) - ming, g, e, Xy Z(pi)- 2(s1)-6;

o Probabilistic model? Probability mass functions annotating e Analogous to Maud et al. (2017) g Ot

the OR gates of the SDD (PSDDs) for CSPNs, with additionally sup- i"? r..; Pe) « (1)
port to logical constraints R 8

PSDD is a joint probability mass function consistent with the constraints

P(L,K,P,A):P(l,k,p,a) = 0iff (Ik,p,a) |~ ¢ CONDITIONAL QUERIES

e CSDD? Credal version of PSDD: credal sets instead of mass functions
. o Conditional queries solved by generalized Bayes” rule (GBR)
e Credal sets on OR gates and terminal nodes T . ;
. X . X e Associated decision problem is deciding whether or not,

e Semantics: all PSDDs with parameters consistent with the local credal sets fora given p € [0,1]: P(xe) > p
o Strong extension K(L, K, P, A) as the joint credal set of o AsP(x|e) + P(=x|e) = 1 for each P(X) € K'(X)

all the joint mass functions induced by the consistent PSDDs and assuming that P(e) > 0, this corresponds to: !
e CSDD Inference? Lower/upper bounds wrt the strong extension minpx)cgr(x) [(1 = #)P(x,e) — ulP(—x,e)] >0
o Base theorem: for each z: P(z) > 0iff z |= ¢ and P(z) = 0iff z [~ ¢ e Recursive formulation (for singly connected circuits):

B k S

o Learning CSDD? Parameters are conditional probabilities, ming, g1ek, (p) Lie1 Z(pi) €(si) 6; > 0

Imprecise Dirichlet Model to learn local (conditional) credal sets o where 7(p;) is equal to min,pm (2)eKri (2) [(1 — )Py, (x,e1) — uPp,(—x, e;)]
e Data scarcity issue on the leaves justifies imprecise approach! _

L P (er) if m(pi) <0
e and ¢(s;) is equal to .
P, (e;) otherwise.
CONCLUSIONS & OUTLOOKS
thm 3 ondition: —
e CSDDs as a new tool for sensitivity analysis in PSDD Alt,mnthm Lower conditional probability
7 input: CSDD, u, X =x, e

o Fast robust marginalisation and conditioning S fornN,...,1do

(but conditioning works for singly connected circuits only) o Circuit traversal 2(n) -0

g 81y Y, from leaves (as v+ vtree node that n is normalized for
o Complexity results and approximated algorithm are needed for ~ marginal if node 7 is terminal then
queries) (n) + A, (1) as in Eq. (12)

e CNs vs. CSDDs? Credal classification with CSDDs? o LD tasks on deci- else

sion nodes whose ((pis x,):‘,l ,K,(P)) < n (decision node)

coefficients  are if X occurs in v then
REFERENCES S if X occurs in v/ then
computed  with

w4 v and w v’

e Hoifung Poon & Pedro Domingos. Sum-product networks: a new deep architecture. marginal queries .
InTEEE ICOV Workshops, paggs 639—690].DIEEE, 2011. P g d Ui piandwi s for 1 <i<k
. . . . . N N . e Bracketing else if X occurs in v then
e Denis Maud, Fabio Cozman, I?larmcud ((vxf\at(y, and Cassio de Campos. Credal sum- scheme to solve wevland u — v
product networks. In Proceedings of ISIPTA ‘17, pages 205-216, 2017. GBR w5y and wy  pifor 1 <i <k
e Denis Deratani Maud, Diarmaid Conaty, Fabio Cozman, Katja Poppenhaeger, and ) end if
Cassio de Campos. Robustifying sum-product networks. International Journal of e Again analogous #(n) < min o T (i) - o (wi) - 6
Approximate Reasoning, 2018. to Maud et al. with o asin E'q (e Em S S
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