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Who?
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The speaker: a 
convenience 

logician*, currently 
at IDSIA 

*Concept and formulation by 
Yoichi Hirai

The real Mad Hatter: senior researcher at CSIS, 
U. Limerick, but until the other day prof. at IDSIA

Prof. (and scientific co-director) at IDSIA, who some time ago told the 
two others “but all this IP stuff is logic, don’t you think?”   

And everything started.
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Message of the paper / poster
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• Quantum weirdness, such as the violation of 
Bell’s inequalities or entanglement, is not 
inherent to Quantum Mechanics as such but to 
any theory of bounded rationality based on the 
requirement that checking its coherence should 
be an easy task, of which QM is a just a 
particular instance.



Alessandro Facchini, IDSIA

Message of the paper / poster

 4

• Quantum weirdness, such as the violation of 
Bell’s inequalities or entanglement, is not 
inherent to Quantum Mechanics as such but to 
any theory of bounded rationality based on the 
requirement that checking its coherence should 
be an easy task, of which QM is a just a 
particular instance.



Alessandro Facchini, IDSIA

Theory of rationality
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g(T)

g(H)

Theory of (almost) desirable gambles
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g(H)

Theory of (almost) desirable gambles

g(T)
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Ax.:                                              g > 0          (accepting partial gain) 

Rule 1:                                                                λ,µ ≥ 0        (conical hull) 

Rule 2:                                                               ε ∈ (0,1)        (closure) 

Rule 3:                                                                                         (ex falso) 

(Plus usual structural rules for sequents - reflexivity is enough)

TADG as a logic calculus
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A ▹ g

A ▹ - 1

A ▹ f

A ▹ g A ▹ f

A ▹ λg+µf

{ A ▹ g εk | k >0 }

A▹ g
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⊬ A ▹ - 1  

if and only if 

there is some probability p: 

p ⊩ g,  ∀g ∈ A 

A completeness theorem for TADG

p ⊩ g :=        ∫Ω
g(ω)dp(ω) ≥ 0

A is logically consistent /coherent
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Consider a finite set of assessments A: 

Does  ⊬ A ▹ - 1 ? 

When the possibility space is infinite, this problem is 
either impossible [undecidable] or difficult [NP-hard] 

The consistency (coherence) problem

Is A coherent / logical consistent ?
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Ax.:                                                          g ∈ Σ ⊂ L >  and membership  is in P 
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A ▹ g

A ▹ - 1

A ▹ f

A ▹ g A ▹ f

A ▹ λg+µf

{ A ▹ g εk | k >0 }

A▹ g

For a theory of bounded [computational] 
rationality, the consistency problem is 
decidable in PTIME
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Whenever Σ ⊊ L > 

⊬ A ▹ - 1  

if and only if 

there is some probability p: 
p ⊩ g,  ∀g ∈ A 

A clash of two worlds
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• Let C  be a logically consistent set of gambles in a theory T 
of computational rationality.  
Then the following are equivalent claims: 

1. C  includes a negative gamble g that is not in -Σ (i.e. it 
is not “negative” according to T) 

2. C  has no classical probabilistic interpretation (model) 
3. Any unit preserving positive linear functional  (state) L 

on the space of gambles that is a model of C (L ⊩ g,  ∀g 
∈ C) is not (a limit of ) a mixture of classical evaluation 
functionals  

4. Any charge extending a state L that is a model of C is 
necessarily signed (negative probability)

The fundamental theorem of weirdness
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• Quantum mechanics is an example of a theory of 
computational rationality.  

• The fundamental theorem of weirdness holds, and 
quantum weirdness is a consequence  of it 

• QM is not the only theory of computational 
rationality 

• Therefore there are other contexts in which weird 
things such as entanglement can occur (at least in a 
thought experiment).

QM, Bernstein and the weird
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quantum weirdness is a consequence  of it 

• QM is not the only theory of computational 
rationality 

• Therefore there are other contexts in which weird 
things such as entanglement can occur (at least in a 
thought experiment).

QM, Bernstein and the weird

Example in our work  

- the space of Bernstein’s polynomials,  

- “being nonnegative” as satisfying the Krivine-Vasilescu’s 
nonnegativity certificate 

- a thought experiment uncovering entanglement with two 
classical coins (“Bernstein’s socks”)
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bag of coins

counter counter

H

T

H

T

Alice Bob

Generalised Expectation and Models 
Whenever L is a bounded linear functional on some space of gambles with L(1)=1, and L(g) ≥ 0, we write  L ⊩ g  (*) 

The Coherence Problem

Bernstein’s Socks, Polynomial-Time Coherence and Entanglement

Alessio Benavoli✴, Alessandro Facchini⊙, Marco Zaffalon⊙ 
✴CSIS, University of Limerick, Ireland & ⊙IDSIA, Switzerland  

{alessio.benavoli}@ul.ie & {alessandro.facchini,zaffalon}@idsia.ch 

Alice in Classicaland, or (Full) Rationality

The Mad Hatter in Posiland, or Computational Rationality

• Possibility space as a possibly infinite set Ω, its elements as input data for some preparation 
procedure (for composite system, cartesian product Ω1 × … × Ωn)  

• Observables as bounded real functions - gambles - on Ω : g ∈ L (Ω).  

• How to enforce rational behaviour in Classicaland?  
• Given an experiment, Alice is a rational agent if the set of gambles she accepts 

- A0:  contains all nonnegative gambles  
- A1: is a (closed) convex cone 
- A2: does not include a negative function, that is a sure loss 

• Example: How tall was Albert Einstein? Do you want to bet on it in Classicaland?  

A gamble is a bounded function on Ω=[1.5,2]m.  

- If Alice is rational, by A0 she should accept any gamble in Plot A, and by A2 she should not 
accepts any gamble in Plot B.  

- If rational, if Alice accepts blue and orange gambles in C, then she also accepts green. 

- In plot D, however she is irrational: since she accepts blue and orange gambles, by A1 she 
is forced to accept the green one, which is a sure loss and thus violates A2. 

• Rationality in Classicaland as a logic calculus: 
• A0: ⊢ ∅▹ g, for every nonnegative g 
• A1.1: { G ▹ f, G ▹ g } ⊢ G ▹ µf + λg, for µ, λ ≥ 0 // A1.2: { G ▹ λkg | k>0, λ ∈ (0,1) } ⊢ G ▹ g 
• A2:  G ▹ f ⊢ G ▹ g,  where f is negative and  g arbitrary 

• Probabilistic interpretation (sound and complete): for every set of gambles G ⋃{g} 
 ⊢ G ▹ g ⟺ for every finitely additive positive measure µ on Ω, if  Lµ⊩ G then Lµ⊩g   

where 

Take Away Message 
• Weirdness (e.g. Bell’s inequality, entanglement) is a consequence of computational rationality, 

i.e. of imposing to a model of rational choice that its coherence problem is decidable in PTIME

(A) (B) (C) (D)

• Let G ⊆ L (Ω) be finite set G of gambles, and K  its deductive closure   

- K  is not coherent ⟺                                                                

• On L (Ω) with Ω infinite, the coherence problem is not decidable 
• If we restrict the class of gambles to the class of all multivariate polynomials of degrees k 

bounded, the problem remains in general difficult (NP hard) 
- Classical probability theory, when Ω is infinite, is either undecidable or NP-hard

∃λi ≥ 0 : − 1 −
|%|

∑
ℓ=1

λℓg ∈ ℒ≥

• Imagine a word where a gamble is nonnegative/negative if it is nonnegative/
negative and its nonnegativity/negativity can be assessed efficiently (in PTIME) 

• How to enforce rational behaviour in Posiland?  
• Given an experiment, the Mad Hatter is rational if the set of gambles he accepts 

- B0: contains all nonnegative gambles  
- B1=A1: is a (closed) convex cone 
- B2: does not include a negative function, that is sure loss 

• Example reloaded: How tall was Albert Einstein? Do you want to bet on it in Posiland? 
Assume we split the nonnegative gambles in two groups [plot A]: the orange ones whose 
nonnegativity can be assessed in polynomial time; and the blue ones whose nonnegativity 
cannot be assessed in polynomial time  

- In Plot B, Alice is P-rational, since the blue gamble does not contradicts B2 
- In Plot C, however, Alice is not P-rational, since she contradicts B2. 

• Rationality in Posiland as a logic calculus: (Assume nonnegative is closed and contains constant) 
• B0: ⊢ ∅▹ g, for every nonnegative g 
• B1.1: { G ▹ f, G ▹ g } ⊢ G ▹ µf + λg, for µ, λ ≥ 0 // B1.2: { G ▹ λkg | k>0, λ ∈ (0,1) } ⊢ G ▹ g 
• B2:  G ▹ f ⊢ G ▹ g, G ▹ f ⊢ G ▹ g,  where f is negative and  g arbitrary

(A) (B) (C)

L(g) := ∫Ω
g(ω)dμ(ω)

Coherence and Duality 
Given a (P) coherent set of gambles C  ⊆  L ’ , its dual is the class of models (states) satisfying C  :  

{ L ∈  L ’ *| L(1) = 1,  L ⊩ g , ∀g ∈ C }

Updating via Partition of Unit 
A partition of unit is a family Π of nonnegative 
functions that sum up to one. Let π  a subset sum 
of elements in Π. Then an updated lower prevision 
for q is                                                                                                   

EB(q |π) = sup
λj≥0,λ0

λ0  s.t  (q − λ0)π −
|G|

∑
j=1

λjgj

Fundamental Theorem of Weirdness
• Theorem 1: Let C  be a P-coherent set of gambles. Then the following are equivalent claims: 

1. C  includes a negative gamble g that is not negative 
2. C  has no classical probabilistic interpretation (model, as given by (*) )  
3. Any positive linear functional L on L R,  preserving the unit (L(1) = 1) and satisfying  ( * ) 

is not a mixture or a limit of mixtures of classical evaluation functionals 
4. Any charge extending a positive linear functional L on L R,  preserving the unit and 

satisfying ( * ) is necessarily signed (negative probability)

I can set up a
controlled experiment
that makes the 
Mad Hatter accept 
a negative gamble

I can set up a
controlled experiment
that makes the 
Mad Hatter accept 
a negative gamble

Do you accept 
this gamble?

Shall I?
Yes I satisfy B0-B2
 and it is favourable 
to me given the 
prepared 
         experiment

Yes  It is 
desirable

You are a fool, the 
it is negative!

Bell with Two Classical Coins

Fundamental Result

Introducing “Bernstein’s Socks (Coins)”
• Consider two classical coins and the possibility space given by the probabilities of the four 

possible outcomes H1H2, T1H2, H1,T2, T1T2   

• The gambles are all real polynomials on Ω of degree 2 
• Evaluating the nonnegativity of g is NP-hard. We thus redefine the meaning of being 

nonnegative as follows: a gamble is said to be nonnegative if it is of the form  

• Nonnegativity can be assessed in PTIME

Ω := {θ ∈ ℝ3 ∣ θ ≥ 0, θH1H2
+ θT1H2

+ θH1T2
≤ 1}

θH1H2

θT1H2

θH1T2

1 − θH1H2
− θT1H2

− θH1T2

= Prob

H1H2
T1H2
H1T2
T1T2

∑
α∈ℕ4,∑4

i=1 αi=2
uαθα1

H1H2
θα2

T1H2
θα3

H1T2
(1 − θH1H2

− θT1H2
− θH1T2

)α4,  with uα ∈ ℝ≥

L(θH1H2
) = z100 = 1/3 L(θ2

H1H2
) = z200 = 1/3

L(θT1H2
) = z010 = 1/6 L(θ2

T1H2
) = z020 = 0

L(θH1T2
) = z001 = 1/6 L(θ2

H1T2
) = z002 = 0

L(θH1H2
θT1H2

) = z110 = 0 L(θH1H2
θH1T2

) = z101 = 0
L(θT1H2

θH1T2
) = z011 = 1/6 L(1) = z000 = 1.

• We design a thought experiment in which a negative but not negative gamble has positive 
expectation (a CHSH-like experiment, like in the comic strip, but with classical coins) 

• L is a state, i.e. a unit-preserving positive linear functional on Ω  
• The set C := {g  ∈  LR | L ⊩ g } is P-coherent 
• Let 1/6 ≥ ε > 0, and consider 

- L(q) = 1/6 - ε ≥ 0, meaning that q ∈ C and thus q is not negative 
• q is negative, indeed it holds that q(θ) < -ε, for every θ ∈ Ω 
• By Theorem 1, there is no classical probabilistic interpretation (model) for C, hence from the 

classical point of view, C is “incoherent”

q(θ) = − (θH1H2
+ θT1H2

)2 − (θH1H2
+ θH1T2

)(−2θH1H2
− 2θT1H2

+ 1) − ε

Entanglement with Two Classical Coins
• Two coins in the joint state L are drawn from a bag: one is sent to Anne and one to Bob. 
• We check that a measurement of the bias of Anne’s coin will allow the prediction with 

certainty of the bias of Bob’s coin. 
• Assume Alice tosses her coin, and it lands H. Given π=θHH+θHT, for gamble q(θ)=θHH+θTH 

(“H on Bob’s coin”), her updated prevision is λ0 = 1, that is the solution of  

- Anne instantaneously knows that Bob’s toss lead to H for him 
• The same holds in all other cases, hence the two coins are totally “correlated”. 
• Classical correlation can be explained by a common cause, or correlated “elements of 

reality”. This is not the case in Bernstein’s Posiland. Indeed,  the marginal operators (states) 
satisfy 

• Example of classical correlation model compatible with the marginal moments above is the 
mixture of atomic charges 

• However, this model (or any other) can never satisfy the moment constrains given by state L. 
• We have entanglement.

0 = L((q − λ0)π) = − λ0z001 − λ0z100 + z011 + z101 + z110 + z200

p(θ) = 1
2 δ

1
6 (3 − 3)

0
0

1
6 (3 + 3)

(θ) + 1
2 δ

1
6 (3 + 3)

0
0

1
6 (3 − 3)

(θ) .

L(θH2
) = L(θH1H2

+ θT1H2
) = z100 + z010 = 1

2 ,

L(θH1
) = L(θH1H2

+ θH1T2
) = z100 + z001 = 1

2 ,

L(θ2
H2

) = L((θH1H2
+ θT1H2

)2) = z200 + 2z110 + z020 = 1
3 ,

L(θ2
H1

) : = L((θH1H2
+ θH1T2

)2) = z200 + 2z101 + z002 = 1
3 .


