Imprecise Gaussian Discriminant Classification

11th International Symposium on Imprecise Probabilities: Theories and Applications

CARRANZA-ALARCON Yonatan-Carlos

Ph.D. Candidate in Computer Science

DESTERCKE Sébastien

Ph.D Director

03 Jul 2018 to 09 Jul 2019

CID Team

New challenges

- Multi label classification
- Label Ranking

Classification

- o Motivation
- Precise Decision
- o Discriminant Analysis
- Imprecise Classification
 - o Imprecise Gaussian discriminant analysis
 - Cautious Decision

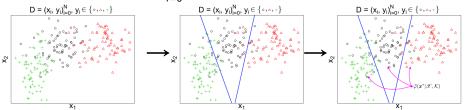
Evaluation

- Cautious accuracy measure and Datasets
- Experimental results
- Conclusions and Perspectives

3

Classification - Outline (Example)

Solution D = $\{x_i, y_i\}_{i=0}^N \subseteq \mathbb{R}^p \times \mathcal{K}$



Objective

Given training data $D = \{x_i, y_i\}_{i=0}^N$:

1 learning a classification rule : $\varphi : \mathscr{X} \to \mathscr{K}$.

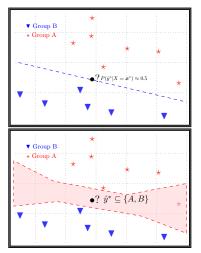
2 predicting new instances $\widehat{\varphi}(\mathbf{x}^*)$

Motivation

What is the bigger problem in (precise) Classification?

• Precise models can produce many mistakes for hard to predict unlabeled instances.

• One way to recognize such instances and avoid making such mistakes too often → Making a cautious decision.



Precise Classification

Step **1** Learning the conditional probability distribution $\mathbb{P}_{Y|X^*}$.

Step **2** Predicting the "optimal" label amongst $\mathcal{K} = \{ m_1, ..., m_K \}$, under $\mathcal{L}_{0/1}$ loss function, for a new instance \mathbf{x}^* :

$$m_{i_{K}} > m_{i_{K-1}} > \dots > m_{i_{1}} \iff P(y = m_{i_{K}} | \boldsymbol{x}^{*}) > \dots > P(y = m_{i_{1}} | \boldsymbol{x}^{*})$$

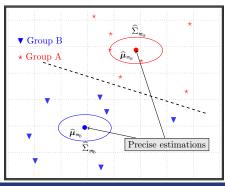
The Pick out the most preferable label m_{i_K} \iff maximal probability plausible $P(y = m_{i_K} | \mathbf{x}^*)$

(Precise) Gaussian Discriminant Analysis

Applying Baye's rules to $P(Y = m_a | X = \mathbf{x}^*)$:

$$P(y = m_k | X = \mathbf{x}^*) = \frac{P(X = \mathbf{x}^* | y = m_k)P(y = m_k)}{\sum_{m_l \in \mathcal{X}} P(X = \mathbf{x}^* | y = m_l)P(y = m_l)}$$

Normality $P_{X|Y=m_k} \sim \mathcal{N}(\mu_{m_k}, \Sigma_{m_k})$ and precise marginal $\pi_{m_k} := P_{Y=m_k}$.



- Classification
 - o Motivation
 - Precise Decision
 - o Discriminant Analysis
- Imprecise Classification
 - o Imprecise Gaussian discriminant analysis
 - Cautious Decision

Evaluation

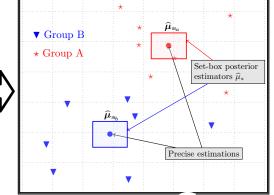
- o Cautious accuracy measure and Datasets
- Experimental results
- Conclusions and Perspectives

Imprecise Gaussian Discriminant Analysis (IGDA)

Objective : Making imprecise the parameter mean μ_k of each Gaussian distribution family $\mathscr{G}_k := \mathsf{P}_{X|Y=m_k} \sim \mathscr{N}(\mu_k, \widehat{\Sigma}_{m_k})$ **Proposition :** Using a set of posterior distribution \mathcal{P} ([4, eq 17]).

û. ▼ Group B $\hat{\Sigma}_{-}$ ▼ Group B * Group A * Group A Set-box posterior estimators $\hat{\mu}_*$ $\widehat{\mu}_{m}$ Precise estimations Precise estimations

Recherche



Decision Making in Imprecise Probabilities

Definition (Partial Ordering by Maximality [1])

Under $\mathscr{L}_{0/1}$ loss function and let $\mathscr{P}_{Y|x^*}$ a set of probabilities then m_a is preferred to m_b if and only if

$$\inf_{\mathcal{P}_{Y|\boldsymbol{x}^{*}}\in\mathscr{P}_{Y|\boldsymbol{x}^{*}}} P(Y = m_{a}|\boldsymbol{x}^{*}) - P(Y = m_{b}|\boldsymbol{x}^{*}) > 0$$
(1)

- This definition give us a partial order $>_M$
- The maximal element of partial order is the cautious decision :

$$Y_M = \{m_a \in \mathcal{K} \mid \not\exists m_b : m_a \succ_M m_b\}$$

Decision Making in IGDA

• Using the Bayes' rule on the criterion of maximality :

$$\inf_{\mathbb{P}_{Y|\boldsymbol{x}^*} \in \mathscr{P}_{Y|\boldsymbol{x}^*}} P(Y = m_a | \boldsymbol{x}^*) - P(Y = m_b | \boldsymbol{x}^*) > 0$$
(2)

We can reduce it to solving two different optimization problems :

$$\sup_{P \in \mathscr{P}_{X|m_b}} P(\mathbf{x}^* | y = m_b) \iff \overline{\mu}_{m_b} = \underset{\mu_{m_b} \in \mathscr{P}_{\mu_{m_b}}}{\arg \max} - \frac{1}{2} (\mathbf{x}^* - \mu_{m_b})^T \widehat{\Sigma}_{m_b}^{-1} (\mathbf{x}^* - \mu_{m_b}) \quad (BQP)$$

$$\inf_{P \in \mathscr{P}_{X|m_a}} P(\mathbf{x}^* | y = m_a) \iff \underline{\mu}_{m_a} = \underset{\mu_{m_a} \in \mathscr{P}_{\mu_{m_a}}}{\arg \min} - \frac{1}{2} (\mathbf{x}^* - \mu_{m_a})^T \widehat{\Sigma}_{m_a}^{-1} (\mathbf{x}^* - \mu_{m_a}) \quad (NBQP)$$

First problem box-constrained quadratic problem (BQP).
 Second problem non-convex BQP

→ solved through Branch and Bound method.

Decision Making in IGDA

• Using the Bayes' rule on the criterion of maximality :

$$\inf_{\mathbb{P}_{Y|\boldsymbol{x}^*} \in \mathscr{P}_{Y|\boldsymbol{x}^*}} P(Y = m_a|\boldsymbol{x}^*) - P(Y = m_b|\boldsymbol{x}^*) > 0$$
(2)

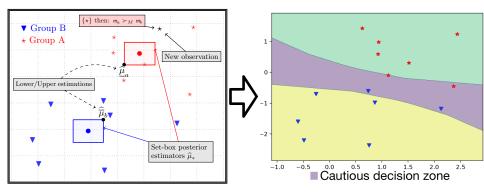
• We can reduce it to solving two different optimization problems :

$$\sup_{P \in \mathscr{P}_{X|m_b}} P(\mathbf{x}^* | y = m_b) \iff \overline{\mu}_{m_b} = \underset{\mu_{m_b} \in \mathscr{P}_{\mu_{m_b}}}{\operatorname{arg\,max}} - \frac{1}{2} (\mathbf{x}^* - \mu_{m_b})^T \widehat{\Sigma}_{m_b}^{-1} (\mathbf{x}^* - \mu_{m_b}) \quad (\mathsf{BQP})$$
$$\inf_{P \in \mathscr{P}_{X|m_a}} P(\mathbf{x}^* | y = m_a) \iff \underline{\mu}_{m_a} = \underset{\mu_{m_a} \in \mathscr{P}_{\mu_{m_a}}}{\operatorname{arg\,min}} - \frac{1}{2} (\mathbf{x}^* - \mu_{m_a})^T \widehat{\Sigma}_{m_a}^{-1} (\mathbf{x}^* - \mu_{m_a}) \quad (\mathsf{NBQP})$$

First problem box-constrained quadratic problem (BQP).
 Second problem non-convex BQP

 \rightarrow solved through Branch and Bound method.

Cautious decision zone (example with 2 class)



Note the non-linearity boundary decision !!

- Classification
 - o Motivation
 - Precise Decision
 - o Discriminant Analysis
- Imprecise Classification
 - o Imprecise Gaussian discriminant analysis
 - Cautious Decision

Evaluation

- Cautious accuracy measure and Datasets
- Experimental results
- Conclusions and Perspectives

Datasets and experimental setting

- № 9 data sets issued from UCI repository [2].
- IO×10-fold cross-validation procedure.
- B Utility-discounted accuracy measure proposed to Zaffalon et al on [3].

$$u(y, \widehat{Y}_M) = \begin{cases} 0 & \text{if } y \notin \widehat{Y}_M \\ \frac{\alpha}{|\widehat{Y}_M|} - \frac{1-\alpha}{|\widehat{Y}_M|^2} & \text{else} \end{cases}$$

Goal : reward cautiousness to some degree α :

- $\Rightarrow \alpha = 1$: cautiousness = randonness
- $\implies \alpha \rightarrow \infty$: best classifier vacuous

#	name	# instances	# features	# labels
а	iris	150	4	3
b	wine	178	13	3
С	forest	198	27	4
d	seeds	210	7	3
e	dermatology	385	34	6
f	vehicle	846	18	4
g	vowel	990	10	11
h	wine-quality	1599	11	6
i v	vall-following	5456	24	4

TABLE - Data sets used in the experiments

Experimental results

	LDA	ILI	DA	QDA	IQ	DA	Avg.
#	acc.	<i>U</i> 80	U ₆₅	acc	<i>U</i> 80	<i>и</i> ₆₅	time (sec.)
а	97.96	98.38	97.16	97.29	98.08	97.13	0.56
b	98.85	98.99	98.95	99.03	99.39	99.09	1.49
С	94.61	94.56	94.05	89.43	91.77	88.90	12.14
d	96.35	96.59	96.51	94.64	95.20	94.72	1.50
е	96.58	97.06	96.94	82.47	84.24	84.05	19.24
f	77.96	81.98	79.59	85.07	87.96	86.13	3.10
g	60.10	67.45	62.41	87.83	89.96	88.40	4.95
h	59.25	65.83	60.31	55.62	65.85	60.36	34.85
i	67.96	71.34	66.65	65.87	71.79	69.75	10.77
avg.	83.68	86.05	84.03	80.34	87.16	85.33	10.1

TABLE - AVERAGE UTILITY-DISCOUNTED ACCURACIES (%)

- Classification
 - o Motivation
 - Precise Decision
 - o Discriminant Analysis
- Imprecise Classification
 - o Imprecise Gaussian discriminant analysis
 - Cautious Decision

Evaluation

- o Cautious accuracy measure and Datasets
- Experimental results
- Conclusions and Perspectives

Conclusions and Perspectives Imprecise Gaussian Discriminant Classification

• Works done since submission of ISIPTA paper :

- Considering the diagonal structure of the covariance matrix.
- ✓ Releasing precise estimation of marginal distribution P_Y to convex set of distributions 𝒫_Y.
- ✓ Considering a generic loss function \mathscr{L} instead of $\mathscr{L}_{0/1}$.
- What remains to do
 - X Make imprecise the covariance matrix Σ_{m_k} by using a set of prior distributions (cf.Poster).
 - X Making imprecise the components eigenvalues and eigenvectors of covariance matrix Σ_{m_k} .

ıtc

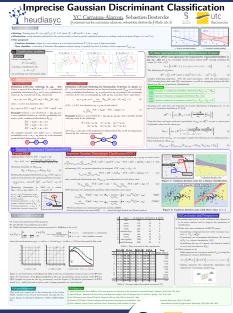
Recherche

18

Poster

ANY QUESTIONSP

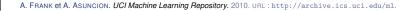
Please come to my poster :)



References

.

Matthias CM TROFFAES. "Decision making under uncertainty using imprecise probabilities". In : International Journal of Approximate Reasoning 45.1 (2007), p. 17-29.



Marco ZAFFALON, Giorgio CORANI et Denis MAUÁ. "Evaluating credal classifiers by utility-discounted predictive accuracy". In : International Journal of Approximate Reasoning 53.8 (2012), p. 1282-1301.

Alessio BENAVOLI et Marco ZAFFALON. "Prior near ignorance for inferences in the k-parameter exponential family". In : Statistics 49.5 (2014), p. 1104-1140.

