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Counting processes in general

X+: the number of events that have occurred up to time 7
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We model our beliefs by means of the transition probabilities

P<Xt+A =Yy | Xt = x,g(t,7 = xn,...,th = X1>.
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Xy = xy



The Poisson process in particular
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For the Poisson process, we furthermore assume that the transition probabilities
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The Poisson process in particular

Xo=0 XpA=y—x
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For the Poisson process, we furthermore assume that the transition probabilities

1. only depend on the present, [Markovianity]
2. only depend on the length of the time period, [time homogeneity]

3. only depend on the number of new events. [state homogeneity]
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A Poisson process is uniquely characterised by a single parameter: the rate A!
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The rate parameter

A Poisson process is uniquely characterised by a single parameter: the rate A!

It has multiple interpretations, for instance:

Q the expected number of new events in any time period is proportional to A:

EP(XH—A | Xy =x,X, = xu) = x+ AA;

A is the (initial) rate at which the probability of a single event increases:

P(Xppn=x+4+1|Xs=x,X, =x,) = AA+0(A).



What if we do not know the rate A precisely,
but only know that it belongs to
the rate interval [\, A]?



The general approach

We let 22 be some set of processes characterised by the rate interval [A, X],

and define the lower expectation

Es(f| Xe=xXy=xy) =inf{Ep(f | Xt =x,Xy, =x,): P € P}.

Choose & such that
== (i) computing E»(f | X¢ = x, Xy, = xy) is tractable,
— (i) E» (- | -) is Poisson-like, in the sense that
(@) E 5 (g(Xs4+a)| Xt = x, Xy = x,) is Markov and homogeneous,

(b) Epo(Xisa | Xe = x, Xy = xu) = x + AA.



A naive imprecise Poisson process

If 2 is the set of all Poisson processes with rate A in the rate interval [A, A], then

& computing E »(f | X; = x, X, = x,) is a one-parameter optimisation
problem;

& Eu(-| ) is Poisson-like;

** every Pin & is Markov and homogeneous.



An alternative condition

(VP € 2)(3A € [AA)(VE A, x,x,...)

P(Xpypn=x+1|Xe=xXy = x4) = AA+0(A)



An alternative condition

(VP € 2)(3N € (LA (VA x,xy ... )
P(Xpypn=x+1|Xe=xXy = x4) = AA+0(A)

T

(VP € P) A AB(VE A, %, %)

AA+0(A) S P(Xpyp =x+1] X =x,Xy = x,) < AA+0(A)



A more involved imprecise Poisson process

If 2 is the set of processes that are consistent with the rate interval [A, 1],
in the sense that

A+ 0(A) < P(Xpypn =x+1| Xi = x, X, = x,) < AA+0(A),
then

< a Pin & is not necessarily Markov nor homogeneous;

¥ computing Eu(f | Xt = x, Xy = xy) is non-trivial (if not infeasible).



A more involved imprecise Poisson process

If 2 is the set of processes that are consistent with the rate interval [A, 1],
in the sense that

A+ 0(A) < P(Xpyp =x+1| Xi = x, X, = x,) < AA+0(A)

7

then

< a Pin & is not necessarily Markov nor homogeneous;
¥ computing Eu(f | Xt = x, Xy = xy) is non-trivial (if not infeasible).

However, we show that

oo

Y0 computing E 5 (g(Xs+a) | X¢ = x, Xy = xy) is tractable;
®9 E ,(- | -) is Poisson-like.
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