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I. MOTIVATION

E ∼ Normal(0, Ik) = E′E ∼ χ2
k + E | E′E ∼ isotropic

(configuration) (orientation)

Precise simultaneous inference for k unknown quantities must rely on a known correlational struc-
ture such as error independence, i.e. E ∼ Normal(0, Ik). We relax this assumption by keeping the
χ2
k configuration component while ridding the isotropic orientation component.

II. NOTATION & MODEL

Y is a k-vector of observable measurements,
and corresponding M its unknown true values.
E is a vector of measurement errors and S2 an
associated variance parameter. Posit E, the fol-
lowing body of marginal model evidence:

1. Y −M = E: additive measurement error
2. Y = y: precisely observed measurement
3. Error configuration:

E′E = S2U, where U ∼ χ2
k

4. Fixed error variance: S2 = s2

(4’. Random error variance: S2 ∼ Us)
Auxiliary variables U and Us are means to ex-
press evidence in stochastic form. E is judged
to be independent suitable for DS-ECP (see IV).
No assumption on error orientation is made.

III. EVIDENCE PROJECTION AND COMBINATION

Combination of evidence E results in a class of
subsets of the full model state space

RE
def
== {

(
Y,M,E, S2

)
∈ Ω :

Y = y, Y −M = E, E′E = S2U, S2 = s2},

which is a multi-valued map from U to subsets
of Ω. Since U ∼ χ2

k, RE is a random subset of Ω
with distribution inherited from U . The density
function of U dictates the mass function of RE.

Projection of RE onto the margin of interest M,

RM|E
def
== {M ∈ ΩM : (M− y)

′
(M− y) = s2U}

where U ∼ µE, the χ2
k distribution. RM|E is

again a random subset of ΩM whose distribu-
tion is dictated by U . For every realization U =
u, RM|E (u) is a k-sphere centered at y with ra-
dius s

√
u. We say that RM|E embodies posterior

inference for M given evidence E.

IV. DS-ECP
Central to Dempster-Shafer Extended Calculus
of Probability (DS-ECP) is the processing of
bodies of independent marginal evidence.

DEFINITION 1. A body of marginal evidence E
consisting of J pieces is said to be independent,
if the marginal auxiliary variables (a.v.s) asso-
ciated with each piece are all statistically inde-
pendent. That is, for Uj ∼ µj , j = 1, · · · , J ,

(U1, · · · , UJ) ∼ µ1 × · · · × µJ .
Notably, deterministic pieces of evidence are
associated with degenerate a.v.s, thus always
independent of other pieces of evidence.

Dempster’s Rule of Combination amounts to
1) taking the product of marginal a.v.s, and 2)
applying domain revision to the joint a.v. to ex-
clude values that result in algebraic incompati-
bility, i.e. empty intersections of marginal focal
sets. Denote µ the prior probability of U, the
joint a.v. for E measurable w.r.t. σ (Ξ). A poste-
riori E, revise µ to µE measurable w.r.t. σ (ΞE) ⊂
σ (Ξ) where ΞE = {u ∈ Ξ : RE (u) 6= ∅}, and

µE = (µ× 1ΞE) /µ (ΞE) ,

where 1A(S) = 1 if S ⊆ A and 0 otherwise. For
the current model, domain revision of the a.v.
is trivial, namely µE = µ.

Stochastic three-valued logic. Posterior in-
ference about assertions concerning the state
space is expressed through a probability triple
(p, q, r), representing weights of evidence “for”,
“against”, and “don’t know” about that asser-
tion. Set functions p, q, r : ΩM → [0, 1] are such
that for all H ∈ σ (ΩM),

p (H) =

∫

{u∈ΞE:RM|E(u)⊆H}
dµE,

The (p, q, r) representation is an alternative to a
pair of belief and plausibility functions on ΩM,
where p is the belief function and 1−q (equiva-
lently p+r) is its conjugate plausibility function.

V. POSTERIOR INFERENCE

Linear forms of hypotheses are expressed by a
consistent system of equations CM = a, where
C is a real-valued p by k matrix with arbitrary p.
Define summary statistic

ty = (a−Cy)
′
(CC′)

−1
(a−Cy) ,

where in case p > rank(C), the inverse is taken
to be the Moore-Penrose pseudoinverse.

THEOREM 3. Posterior probabilities concerning
one-sided linear hypothesis H : CM ≤ a are
{p (H) , q (H) , r (H)} = {F (ty) , 0, 1− F (ty)}

if Cy ≤ a, and
{p (H) , q (H) , r (H)} = {0, F (ty) , 1− F (ty)}

otherwise. F is the CDF of scaled χ2
k with scal-

ing factor s2 (fixed error variance case).

Posterior (1− α) credible regions of the form
Aα =

{
M ∈ ΩM : (M− y)

′
(M− y) ≤ F−1

1−α
}
,

where F−1
α is the αth-quantile of µE.

THEOREM 6. Aα is a sharp posterior credible re-
gion in the sense that r(Aα) = 0 for all α.
THEOREM 7. Aα is calibrated to the i.i.d. error
model, P ∗, in the sense that for all M∗ and all
α, p(A) = P ∗ (M∗ ∈ A) = 1 − α and q(A) =
P ∗ (M∗ ∈ Ac) = α .

Figure 1: Focal sets that constitute p(H) for one-sided
linear (left) and rectangular (right) hypotheses.

Rectangular regions of the form

Cα =
{
M ∈ ΩM : M ∈ ⊗ki=1 (yi ± cα · s)

}

parallels Bonferroni simultaneous confidence
regions. Probabilities associated with Cα are
functions of the standardized half width cα.

EXAMPLE 3 (test for all pairwise contrasts). The si-
multaneous test for all pairwise means are iden-
tical has null hypothesis

H = ∩1≤i<j≤kHi,j , Hi,j : Mi = Mj .

The number of pairwise contrasts tested is on
quadratic order of k, but the compound hypoth-
esis H always spans a 1-dimensional subspace
of ΩM. As k increases, the distribution of r(H)
(Figure 2 left) approaches uniform, which is that
of a correctly calibrated p-value under the null
model, whereas the Bonferroni procedure (Fig-
ure 2 right) becomes increasingly conservative
for larger k. The vacuous orientation model
captures the logical connection among the large
number of hypotheses (collinearity), and deliv-
ers posterior inference reflective of the geometry
of the hypothesis space.

Figure 2: Distribution of r(H) (left) and Bonferroni p-
value (right) for all pairwise contrasts under the null
sampling model. For larger k, r(H) resembles a cor-
rectly calibrated p-value, whereas the Bonferroni p-
value becomes more conservative.

VI. FUTURE DIRECTIONS

The vacuous orientation model may extend to
• Elliptical distributions;
• Multivariate and multiple regression;
• Partially vacuous orientation models

based on finer variance decomposition.
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Motivation: simultaneous inference/meta analysis

M = (M1, . . . ,Mk): vector of unknown parameters

Y = (Y1, . . . ,Yk) a vector of observable data aimed at measuringM

Each Yi is a statistic from an experiment which we understand well,

but we do not how they relate to one another.
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Let E = Y−M denote the vector of measurement errors.
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Posterior Inference

RM|E
def
== {M ∈ ΩM : (M− y)′ (M− y) = s2U},

is a random subset of ΩM (concentric hyperspheres), whose distribution is

dictated by the auxiliary variable U ∼ χ2
k .

RM|E embodies posterior inference for M given E.
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Testing many collinear hypotheses

Example 3. The simultaneous test for all pairwise means being identical:

H = ∩1≤i<j≤kHi,j, Hi,j : Mi = Mj.

For larger k, P (H | E) approaches uniformity as if a well-calibrated p-value.
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