Confidence in Belief, Weight of Evidence and Uncertainty Reporting

Brian Hill

hill@hec.fr

www.hec.fr/hill

GREGHEC, CNRS & HEC Paris

July 3, 2019

- Unknown urn: 100 balls, each red or black.
- Known urn: 100 balls, 50 red, 50 black.

- Unknown urn: 100 balls, each red or black.
- Known urn: 100 balls, 50 red, 50 black.

Keynes Your beliefs about the colour of the next ball drawn?

- Balance of evidence: same
- Weight of evidence: different

Bayesian belief: same $(\frac{1}{2})$.

- Unknown urn: 100 balls, each red or black.
- Known urn: 100 balls, 50 red, 50 black.

Keynes Your beliefs about the colour of the next ball drawn?

- Balance of evidence: same
- Weight of evidence: different

Bayesian belief: same $(\frac{1}{2})$.

Ellsberg Which urn would you rather bet on?

Known urn

Bayesian decision: indifferent.

Ellsberg preferences justified by:

- higher weight of evidence for known urn
- more confidence in probability $\frac{1}{2}$ judgement for that urn

Moral

Bayesianism denies any role for confidence in beliefs or weight of evidence in choice

Ellsberg preferences justified by:

- higher weight of evidence for known urn
- more confidence in probability $\frac{1}{2}$ judgement for that urn

Moral

Bayesianism denies any role for confidence in beliefs or weight of evidence in choice

However confidence in probability judgements reported by the IPCC, US DIA etc.

Belief state:

Beliefs or Credal judgements

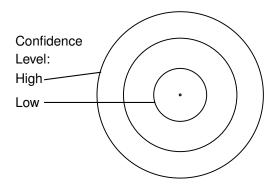
- probability judgements reflecting direction evidence is pointing
- Confidence in beliefs
 - subjective appraisal of the support for them

Belief state:

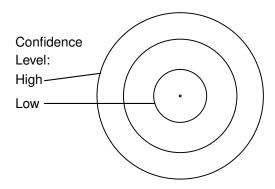
Beliefs or Credal judgements

- probability judgements reflecting direction evidence is pointing +----> balance
- Confidence in beliefs
 - subjective appraisal of the support for them weight

Belief state:

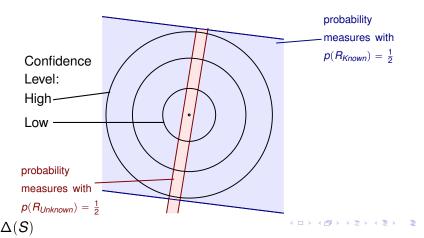

Beliefs or Credal judgements

- probability judgements reflecting direction evidence is pointing +>>> balance
- Confidence in beliefs
 - subjective appraisal of the support for them ++++ weight

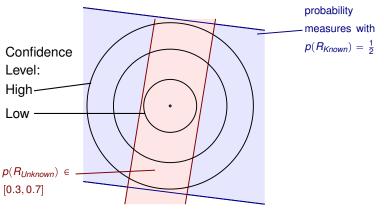

This paper:

- Formal model of weight of evidence (via confidence)
- Support effective uncertainty reporting

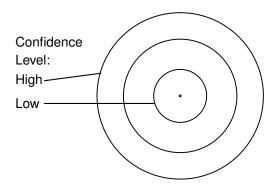
A nested family of sets of probability measures



- A nested family of sets of probability measures
 - generalisation of credal sets


A nested family of sets of probability measures

- portrays precision / weight trade-off
- without requiring the agent to settle on a single set.



A nested family of sets of probability measures

- portrays precision / weight trade-off
- without requiring the agent to settle on a single set.

- A nested family of sets of probability measures
 - has solid connections to decision, which carry over to weight of evidence

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Bayesian Clean Separation:

probability (beliefs) vs. utility (desires / values)

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Bayesian Clean Separation:

probability (beliefs) vs. utility (desires / values)

Credal sets / multiple priors No Clean Separation:

Set of priors can reflect **both** beliefs and attitudes to / taste for uncertainty

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Bayesian Clean Separation:

probability (beliefs) vs. utility (desires / values)

Credal sets / multiple priors No Clean Separation:

Set of priors can reflect **both** beliefs and attitudes to / taste for uncertainty

Confidence approach Clean Separation:

- Nested family: beliefs & confidence in beliefs
- Uncertainty attitudes: another parameter

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents.

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents. How are probabilities calibrated?

• on "objectively uncertain / chance" events.

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents.

How are probabilities calibrated?

on "objectively uncertain / chance" events.

In fact: Principal Principle (ordinal version)

> "Objective uncertainty" set of events calibrate probability levels across (rational) agents.

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents.

Idea: use "objective" comparisons of weight of evidence.

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents.

Idea: use "objective" comparisons of weight of evidence.

In fact:

Weight-of-Evidence Principal Principle

"Objective weight-of-evidence" set of probability judgements calibrate confidence levels across (rational) agents.

Desiderata

- 1. Clean belief / value separation
- 2. Unambiguous uncertainty language

Challenge: calibrate confidence levels across agents.

Idea: use "objective" comparisons of weight of evidence.

In fact:

Weight-of-Evidence Principal Principle

"Objective weight-of-evidence" set of probability judgements calibrate confidence levels across (rational) agents.

Confidence Elicitation Web Tool http://confidence.hec.fr/app/

・ロン ・() ・ () ・ () ・ ()

This paper:

- Use to model weight of evidence
- Support effective uncertainty reporting

General Project

- Model of confidence in beliefs
- Role in decision making
- Solid normative credentials
- Application to IPCC uncertainty language
- Belief updating
- Elicitation ...

Thank you.

hill@hec.fr

www.hec.fr/hill

Further details:

- Confidence and Decision, *Games and Economic Behavior*, 82: 675–692, 2013.
- Incomplete Preferences and Confidence, Journal of Mathematical Economics, 65: 83-103, 2016.
- Confidence in Beliefs and Rational Decision Making, *Economics and Philosophy*, 32: 223-258, 2019.
- Climate Change Assessments: Confidence, Probability and Decision, Philosophy of Science, 84: 500-522, 2017 (with R. Bradley, C. Helgeson).
- Combining probability with qualitative degree-of-certainty metrics in assessment, *Climatic Change* 149: 517-525, 2018 (with R. Bradley, C. Helgeson).

Web tool:

http://confidence.hec.fr/app/.