

centre for data science and systems complexity

Embedding Probabilities, Utilities and Decisions in a Generalization of Abstract Dialectical Frameworks

Atefeh Keshavarzi Zafarghandi, Rineke Verbrugge, Bart Verheij

Department of Artificial Intelligence, University of Groningen, The Netherlands

ISIPTA

5 July, 2019

(日) (四) (三) (三) (三)

Introduction

Decision Making

- Decision (action)
 - Uncertainties;

Preferences;

< E -

Introduction

Definition

Given \succeq_p a rational order over the finite set of outcomes O. A function $u: O \to \mathbb{R}$ is called a **utility function** that represents \succeq_p if, for every two outcomes o_1 and o_2 , $u(o_1) \ge u(o_2)$ iff $o_1 \succeq_p o_2$.

(人間) ト く ヨ ト く ヨ ト

Introduction

whether or not to buy an international insurance for 100 euros

States:

1- Maryam gets emergency surgery when she is abroad 2- Maryam does not get emergency surgery when she is abroad

Outcomes:

1- Maryam gets emergency surgery when she is abroad and it is paid by the health insurance company.

2-She buys the international health insurance but she does not use it.

3- She gets emergency surgery when she is abroad and she has to pay by herself.

4- She does not buy the international health insurance and she does not need it.

Definition

- A decision problem is a tuple (A, S, O, p, u) where:
 - A is a finite set of actions;
 - S is a finite set of states;
 - O is a finite set of outcomes;
 - p is a probability function on states, $p:S \to [0,1]$ such that $\Sigma_s p(s) = 1;$
 - *u* is a utility function on outcomes, $u: O \to [0,1] \cap \mathbb{Q}$.

Decision Problem

Definition

Let (A, S, O, p, u) be a decision problem. The **expected utility** of $a \in A$ is defined as:

$$EU(a) = \sum_{o \in O} p(s|a, o) u(o)$$

- p(s|a, o): probability of *s* combined with *a*, leads to *o*,
- u(o): utility of o.

Definition

Maximum expected utility(MEU), $a \in MEU$ if for each $a' \in A$, $EU(a) \ge EU(a')$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q (>

 Formalisms, solvers and automated methods in decision theory
 influence diagrams [Howard and Matheson, 2005, Olmsted, 1985, Shachter, 1986]

Question

Why are new approaches required?

- Importance of decision making in human life
- wide variety of decision problems

Motivation

Argumentation formalism

- Abstract argumentation frameworks (AFs)[Dung, 1995]
- Abstract dialectical frameworks (ADFs) [Brewka and Woltran, 2010]
- Reasoning model: [Amgoud and Prade, 2009, Verheij, 2016]
- values, preferences [Vlek et al., 2016, Hunter and Thimm, 2014]

Motivation

Argumentation formalism

- Abstract argumentation frameworks (AFs)[Dung, 1995]
- Abstract dialectical frameworks (ADFs) [Brewka and Woltran, 2010]
- Reasoning model: [Amgoud and Prade, 2009, Verheij, 2016]
- values, preferences [Vlek et al., 2016, Hunter and Thimm, 2014]

Question

Can an argumentation formalism be considered for modeling and solving decision problems?

A.Keshavarzi, R.Verbrugge, B.Verheij (Rug)

Main Contributions

- Introduce numerical Abstract Dialectical Frameworks (nADFs):
 - modeling decision problems,
 - solving the maximum expected utility of a problem.
- Choose the best action in the nADF of a decision problem.

Background: ADFs

Definition

An abstract dialectical framework (ADF) is a tuple D = (N, L, C) where:

- N is a finite set of nodes (arguments, statements, positions);
- $L \subseteq N \times N$ is a set of links;
- C = {φ_n}_{n∈N} is a collection of propositional formulas φ_n : (par(n) → {t, f}) → {t, f}.

Example

Numerical Abstract Dialectical Frameworks

Definition

Let V be $[0,1] \cap \mathbb{Q}$. An **nADF** is a tuple U = (N, L, C, i)

- N is a finite set of nodes;
- $L \subseteq N \times N$ is a set of links;
- $C = \{\varphi_n\}_{n \in \mathbb{N}}, \varphi_n : (par(n) \to V) \to V;$
- *i* is an **input function** , $i: N' \to V$ where $N' \subseteq N$.

A.Keshavarzi, R.Verbrugge, B.Verheij (Rug)

Probabilities and Utilities in ADFs

Numerical Abstract Dialectical Frameworks

Information Ordering

- Many-valued interpretation: $v: N \to V_u, V_u = ([0,1] \cap \mathbb{Q}) \cup \{u\}$
- \leq_i : $\mathbf{u} \leq_i \mathbf{u}$ and $\mathbf{u} \leq_i x$, for $x \in ([0,1] \cap \mathbb{Q})$
- $w \in [v]_c$ iff $v \leq_i w$ and w is a total interpretation.

Characteristic Operator

$$\Gamma_U(v): N \to V_{\mathbf{u}} \quad \text{with} \quad n \mapsto \bigcap \{w(\varphi_n) \mid w \in [v]_c\}.$$

Semantics of nADFs

- admissible in U iff $v \leq_i \Gamma_U(\mathbf{v})$;
- complete in U iff $v = \Gamma_U(\mathbf{v})$;
- grounded in U iff v is the \leq_i -least fixed point of Γ_U ;
- preferred in U iff v is \leq_i -maximal admissible;
- model in U iff $v = \Gamma_U(\mathbf{v})$ and $\forall n \in N, v(n) \neq \mathbf{u}$;

Definition

A decision problem D = (A, S, O, p, u) can be modeled by nADF $U_D = (N, L, C, i)$ as follows:

•
$$N = A \cup S \cup O$$
;
• $\varphi_s = s \text{ for } s \in S$;
 $\varphi_o = o \text{ for } o \in O$;
 $\varphi_{a_i} = \bigotimes_{i \neq k} (\bigoplus_j (s_j \otimes o_{ij}) \succeq \bigoplus_j (s_j \otimes o_{kj})) \text{ for } a_i \in A$
• $i(s) = p(s) \text{ for } s \in S \text{ and } i(o) = u(o) \text{ for } o \in O$.

Embedding of Decision Problems in nADFs

Maryam's decision problem as an nADF.

Example

A.Keshavarzi, R.Verbrugge, B.Verheij (Rug)

Probabilities and Utilities in ADFs

5 July, 2019 13 / 21

Embedding of Decision Problems in nADFs

Theorem

Assume that a decision problem D = (A, S, O, p, u) is modeled by nADF $U_D = (N, L, C, i)$. All semantics of U_D coincide.

Theorem

Let D = (A, S, O, p, u) be a decision problem, let $U_D = (N, L, C, i)$ be the corresponding nADF, and let v be the grounded interpretation of U_D . The set A_1^v equals the set of actions with MEU in the decision problem D.

Related Works and Conclusion

Conclusion

- Argumentation is formally connected to decision making
- nADFs can model standard decision problems
- nADF that formalizes a decision problem, all semantics coincide
- nADF can be constructed for a decision problem to choose the best action

Future Work

- nADFs can be used for modeling decision problems in MAS
- nADFs are powerful enough to answer queries
- Computational complexity of decision problems in nADFs
- Experiments that show the effectiveness of nADFs

Embedding Probabilities, Utilities and Decisions in a Generalization of Abstract Dialectical Frameworks

A.Keshavarzi Zafarghandi, R.Verbrugge, B.Verheij University of Groningen, The Netherlands

- The uncertainty mostly arises because of external factors, called states, out of control of agents; uncertainties can be modeled by probabilities. - An agent usually knows the set of possible outcomes of a decision and has a preferences on them; preferences can be modeled by utilities. · Expected Utility deals with problems in which probabilities of states and utilities of outcomes play a role in the choice.
- Argumentation theory can shed light on the process of decision making, from modeling to evaluating a problem
- Main goal is to propose an argumentation formalism, numerical abstract dialectical frameworks (nADFs) that can model decision problems.

- v is grd(F) if v is the ≤_c-least fixed

< 日 > < 同 > < 回 > < 回 > < 回 > <

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

References I

Amgoud, L. and Prade, H. (2009).

Using arguments for making and explaining decisions.

Artificial Intelligence, 173(3-4):413-436.

Brewka, G. and Woltran, S. (2010).

Abstract dialectical frameworks.

In Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), pages 102–111.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77:321-357.

Howard, R. A. and Matheson, J. E. (2005).

Influence diagrams.

Decision Analysis, 2(3):127-143.

伺 ト く ヨ ト く ヨ ト

References II

Hunter, A. and Thimm, M. (2014).

Probabilistic argument graphs for argumentation lotteries.

In <u>Computational Models of Argument: Proceedings of (COMMA 2014)</u>, pages 313–324, Amsterdam. IOS Press.

Olmsted, S. M. (1985).

On Representing and Solving Decision Problems.

PhD thesis, Stanford University, US.

Shachter, R. D. (1986).

Evaluating influence diagrams.

Operations Research, 34(6):871-882.

Verheij, B. (2016).

Arguments for ethical systems design.

In Legal Knowledge and Information Systems (JURIX 2016), pages 101–110, Amsterdam. IOS Press.

伺 ト く ヨ ト く ヨ ト

Vlek, C. S., Prakken, H., Renooij, S., and Verheij, B. (2016).

A method for explaining Bayesian networks for legal evidence with scenarios. Artificial Intelligence and Law, 24:285–324.

Frame Title

Example

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >