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Known Example – Tuned Mass Dampers
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ẍd

]
+ C

[
ẋs
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Stochastic excitation ẍg
Interval-valued coefficients in C,K
Response is a set-valued process

Interval valued trajectory and interval means w/o TMD:
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Known Example – Elastically Bedded Beam

Figure: a buried pipeline.

See V. Bolotin, Statistical Methods

in Structural Mechanics. San

Francisco: Holden-Day 1969, § 61.

EI w ′′′′(x) + bc w(x) = q(x)

Load q(x) is a random field
Bedding parameter bc is an interval
Response is a set-valued process

Interval trajectory of bending moment, p-box for maximal bending moment:
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New: SPDES, the Stochastic Wave Equation

The linear stochastic wave equation as a prototype of an SPDE:{
∂2
t uc − c2∆uc = Ẇ , x ∈ Rd , t ≥ 0

uc |{t < 0} = 0

The Laplacian: ∆ = ∂2
x1

+ · · ·+ ∂2
xd

.

Space-time white noise excitation Ẇ .

The solution process uc = uc(x , t, ω).

Target: Uncertain propagation speed c as an interval [c , c].

Applications:

Acoustic waves in a medium under noisy disturbances.

Membrane under noisy excitation.

“A drum in the rain”.
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Random Set Solutions of SPDEs

Probability space (Ω,Σ,P). White noise is a generalized stochastic
process with values in the space of distributions

Ω→ D′(Rd+1), ω → Ẇ (ω)

The solution ω → uc(x , t, ω) is a stochastic process with values in

C(R2), d = 1 (classical)

D′(Rd+1), d ≥ 2 (generalized)

Resulting multifunction:

U(ω) = {uc(ω) : c ∈ [c , c]}

with values in the power set of C(R2), respectively D′(Rd+1).

Question: Is U a random set? Implied by measurability of all

U−(B) = {ω ∈ Ω : X (ω) ∩ B 6= ∅}

where B is any Borel subset of C(R2), respectively D′(Rd+1).
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The Classical Case: One Space Dimension

The classical case d = 1:

The map c → uc(ω) is continuous with values in C(R2).

The image of U(ω) of [c , c] is compact.

Take a dense countable subset c1, c2, . . . of [c , c].

The sequence ucn(ω) is dense in U(ω) for every ω.

Let O be an open subset of E. Then

U−(O) = {ω : U(ω) ∩ O 6= ∅} =
∞⋃
n=1

{ω : ucn(ω) ∈ O}

is measurable.

C(R2) is a Polish space (metrizable, complete, separable).

By the Fundamental Measurability Theorem, U is a random set
in C(R2).

Oberguggenberger/Wurzer ISIPTA 2019 Ghent, July 3, 2019 7 / 8



Higher Space Dimensions and New Results

The generalized case d ≥ 2:

Same argument, but D′(Rd+1) is not a Polish space.

ANNOUNCEMENT 1:

A new measurability theorem for multifunctions with values in
dual spaces such as D′(Rd+1).

U is a random set also in space dimension d ≥ 2.

ANNOUNCEMENT 2:

Computation of upper and lower probabilities of intervals (a, b)
of the set-valued solution U(x , t) at (x , t) in d = 1, e.g.,

P(a, b)) = P (U(x , t) ∩ (a, b) 6= ∅)
This employs the observation that

(r , ω)→ vr (ω) = 2
t
u1/r (x , t, ω), r > 0, v0(ω) = 0

is a Brownian motion.
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