Random Set Solutions to Stochastic Wave Equations

Michael Oberguggenberger Lukas Wurzer

ISIPTA 2019, Ghent, July 3 - 7, 2019

Ghent, July 3, 2019

Oberguggenberger/Wurzer

ISIPTA 2019

• Michael Oberguggenberger

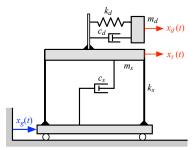
- Professor, Unit of Engineering Mathematics, University of Innsbruck
- Retired October 2018
- Research interests:

partial differential equations, generalized functions, stochastic analysis, imprecise probability, engineering reliability, operations research

Lukas Wurzer

- PhD 2015 of Doctoral College "Computational Interdisciplinary Modelling", University of Innsbruck
- Engineer at Liebherr Verzahntechnik, Ettlingen

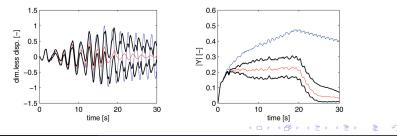
KNOWN EXAMPLE - TUNED MASS DAMPERS



$$\mathbf{M}\begin{bmatrix} \ddot{x}_{\mathrm{s}} \\ \ddot{x}_{\mathrm{d}} \end{bmatrix} + \mathbf{C}\begin{bmatrix} \dot{x}_{\mathrm{s}} \\ \dot{x}_{\mathrm{d}} \end{bmatrix} + \mathbf{K}\begin{bmatrix} x_{\mathrm{s}} \\ x_{\mathrm{d}} \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{m_{\mathrm{d}}}{m_{\mathrm{s}}} \end{bmatrix} \ddot{x}_{\mathrm{g}}$$

Stochastic excitation \ddot{x}_{g} Interval-valued coefficients in C, K Response is a set-valued process

Interval valued trajectory and interval means w/o TMD:



Oberguggenberger/Wurzer

KNOWN EXAMPLE – ELASTICALLY BEDDED BEAM

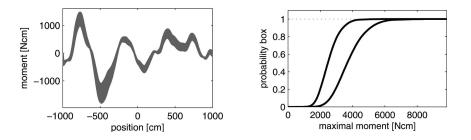
Figure: a buried pipeline.

See V. Bolotin, Statistical Methods in Structural Mechanics. San Francisco: Holden-Day 1969, §61.

$$\exists I w''''(x) + bc w(x) = q(x)$$

Load q(x) is a random field Bedding parameter *bc* is an interval **Response is a set-valued process**

Interval trajectory of bending moment, p-box for maximal bending moment:



NEW: SPDES, THE STOCHASTIC WAVE EQUATION

The linear stochastic wave equation as a prototype of an SPDE:

$$\begin{cases} \partial_t^2 u_c - c^2 \Delta u_c = \dot{W}, \quad x \in \mathbb{R}^d, t \ge 0\\ u_c | \{t < 0\} = 0 \end{cases}$$

The Laplacian: $\Delta = \partial_{x_1}^2 + \dots + \partial_{x_d}^2$.

Space-time white noise excitation \dot{W} .

The solution process $u_c = u_c(x, t, \omega)$.

Target: Uncertain propagation speed c as an interval $[\underline{c}, \overline{c}]$.

Applications:

Acoustic waves in a medium under noisy disturbances.

Membrane under noisy excitation.

"A drum in the rain".

RANDOM SET SOLUTIONS OF SPDES

Probability space (Ω, Σ, P) . White noise is a generalized stochastic process with values in the space of distributions

$$\Omega o \mathcal{D}'(\mathbb{R}^{d+1}), \qquad \omega o \dot{W}(\omega)$$

The solution $\omega \rightarrow u_c(x, t, \omega)$ is a stochastic process with values in

•
$$\mathcal{C}(\mathbb{R}^2)$$
, $d = 1$ (classical)

•
$$\mathcal{D}'(\mathbb{R}^{d+1})$$
, $d \geq 2$ (generalized)

Resulting multifunction:

$$U(\omega) = \{u_c(\omega) : c \in [\underline{c}, \overline{c}]\}$$

with values in the power set of $\mathcal{C}(\mathbb{R}^2)$, respectively $\mathcal{D}'(\mathbb{R}^{d+1})$.

Question: Is U a random set? Implied by measurability of all

$$U^-(B) = \{\omega \in \Omega : X(\omega) \cap B \neq \emptyset\}$$

where B is any Borel subset of $\mathcal{C}(\mathbb{R}^2)$, respectively $\mathcal{D}'(\mathbb{R}^{d+1})$.

THE CLASSICAL CASE: ONE SPACE DIMENSION

The classical case d = 1:

The map $c \to u_c(\omega)$ is continuous with values in $\mathcal{C}(\mathbb{R}^2)$. The image of $U(\omega)$ of $[\underline{c}, \overline{c}]$ is compact.

Take a dense countable subset c_1, c_2, \ldots of $[\underline{c}, \overline{c}]$.

The sequence $u_{c_n}(\omega)$ is dense in $U(\omega)$ for every ω .

Let O be an open subset of \mathbb{E} . Then

$$U^{-}(O) = \{\omega : U(\omega) \cap O \neq \emptyset\} = \bigcup_{n=1}^{\infty} \{\omega : u_{c_n}(\omega) \in O\}$$

is measurable.

 $\mathcal{C}(\mathbb{R}^2)$ is a **Polish space** (metrizable, complete, separable).

By the Fundamental Measurability Theorem, U is a random set in $\mathcal{C}(\mathbb{R}^2)$.

HIGHER SPACE DIMENSIONS AND NEW RESULTS

The generalized case $d \ge 2$:

Same argument, but $\mathcal{D}'(\mathbb{R}^{d+1})$ is **not a Polish space**. **ANNOUNCEMENT 1:**

A new measurability theorem for multifunctions with values in dual spaces such as $\mathcal{D}'(\mathbb{R}^{d+1})$.

U is a random set also in space dimension $d \ge 2$.

ANNOUNCEMENT 2:

Computation of upper and lower probabilities of intervals (a, b) of the set-valued solution U(x, t) at (x, t) in d = 1, e.g.,

$$\overline{P}(a,b)) = P(U(x,t) \cap (a,b) \neq \emptyset)$$

This employs the observation that

$$(r,\omega) \rightarrow v_r(\omega) = \frac{2}{t}u_{1/r}(x,t,\omega), \quad r > 0, \qquad v_0(\omega) = 0$$

is a Brownian motion.