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Classification problem

Classification problem statement

e Given N training examples S = {(x1,y1), ... (xn, yn) }, Xi €
R™, yi € {1, . C}

@ We aim to construct an accurate classifier ¢ :
R™ —{1,.., C}

@ An ensemble-based classifier is the Random Forest (RF)
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Random Forest

Random Forest

Class probability
distribution of RF
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@ Class probabilities are defined by numbers of training
examples which fall into leaf nodes

@ The class probabilities of the RF are computed by averaging
probabilities of trees



Classification problem

Weighted Random Forest

@ Weights of trees and weighted averaging

Random Forest

Class probability
distribution of RF
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Obstacles:
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@ The number of training examples which fall into a leaf node
may be very small

@ Precise class probabilities cannot be expected
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Two ways for solving the problem

@ The first way is to change splitting rules for tree building
(Abellan et al. 2017, Abellan et al., Mantas-Abellan, 2014)

e it leads to changing a tree building algorithm
e it cannot be directly applied to regression or survival analysis

@ The second way is to train a meta-learner which takes into
account imprecision of the class probabilities
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Meta-learner: Underlying ideas

2]

the meta-learner produces weights of trees or
corresponding class probabilities

imprecision of the tree estimates (class probabilities) is
defined by an imprecise statistical inference model, for
example, the IDM

robust (pessimistic or maximin) strategy should be
applied to the meta-learner

special loss functions should be proposed to simplify
optimization problems for computing optimal weights
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An example of the whole classifier

Random Forest

a, b, a, b2 a, b3

Imprecise Dirichlet [0/6; 1/6] [5/6; 6/6] [2/6; 3/6]
model [4/6; 5/6] [0/6; 1/6] [1/6; 2/6]
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Loss function

@ Weights are taken

@ to minimize Euclidean distance between a training class vector
and the obtained class probabilities

@ to maximize the distance over “imprecise” sets of tree class
probabilities

@ A standard way for constructing maximin optimization problem:
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@ A new way:
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We consider only the class probability corresponding to class
y; of the i-th training example and find how it is far from 1
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A simplified quadratic optimization problem

@ The quadratic optimization problem for computing optimal
weights

weW(u)
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o pj.(i,t) are smallest values of probabilities from extreme
points of P; +(s) (from an imprecise statistical model)



Survival analysis

Survival analysis (problem statement)

e It is solved by the Random Survival Forest (RSF)

e Given N training examples S = {(x1,61, D1), ..., (Xn, 6, Dn) },
X € R™, yi € {1, . C}

@ D; indicates time to event of the patient

o If the event of interest is observed, ; = 1, (an uncensored
observation); if the event is not observed, ; = 0 (a censored
observation)

@ A specific regression problem, where we compute the
cumulative hazard estimate H(t) for every leaf node k by
means of the Nelson-Aalen estimator
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Interval-valued hazard estimate

@ How to take into account imprecision of the cumulative
hazard estimate H(t)?

@ The Nelson—Aalen estimator has a standard 100(1 — «)%
confidence interval for Hy(t):

Hk(t) + Zi—n/2 " O'k(t)

where z;_, /5 is the 1 — /2 fractile of the standard normal
distribution, (t) is the variance of the Nelson-Aalen estimator

o We get intervals By = [H,(t), Hx(t)]
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Measure of the model quality

@ Now we have a new measure of the model quality
@ The C-index estimates how good the model is at ranking
survival times

@ It estimates the probability that, in a randomly selected pair
of patients, the patient that fails first had a worst predicted

outcome
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Optimization problem with a modified C-index

@ Optimization problem with the standard C-index
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@ A modified C-index:
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@ Optimization problem with the modified C-index
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Some numerical experiments
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Questions

Thank you for your attention

?
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