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Motivating example

X : lung cancer — to be diagnosed

S : smoking (unobserved variable)

Y : aspirin — may be prescribed to
smokers due to their risk of heart disease

Z : chest pain
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Motivating example

Two domains:

source domain (C = 0) where we
observe data

target domain (C = 1) where we want
to make decisions

Same causal graph, different distributions:

target:

source:

P(X |C = 1) =

P(X |C = 0)

P(Y |X ,C = 1)?

P(Y |X ,C = 0)

P(Z |X ,Y ,C = 1) =

P(Z |X ,Y ,C = 0)
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Prior work on causal domain adaptation

Earlier approaches try find a set of features A ⊆ {Y ,Z} s.t.

P(X |A,C = 1) = P(X |A,C = 0)

Problem: in this graph, the only A that makes X ⊥⊥C |A is
A = ∅
That would mean: take the same decision for every patient

Can we do better?
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Robust approach

Let P be the credal set of all distributions for the target domain
consistent with what we know from the source domain

We want to take decisions that are good regardless of what
P ∈ P is realized

Model as zero-sum game against adversary who chooses P ∈ P
For that, we need to fix a loss function, e.g. Brier or logarithmic
loss

Thijs van Ommen (UU) Robust Causal Domain Adaptation July 4, 2019 5 / 8



Robust approach

Let P be the credal set of all distributions for the target domain
consistent with what we know from the source domain

We want to take decisions that are good regardless of what
P ∈ P is realized

Model as zero-sum game against adversary who chooses P ∈ P
For that, we need to fix a loss function, e.g. Brier or logarithmic
loss

Thijs van Ommen (UU) Robust Causal Domain Adaptation July 4, 2019 5 / 8



A theorem

Theorem (Existence and characterization of P∗)

For HL finite and continuous, a P ∈ P maximizing the adversary’s
objective exists, and P∗ is such a maximizer if and only if there exists
a λ∗ ∈ RX such that
(i) for every y ∈ Y with P∗(y) > 0,∑

z∈Z:
P∗(y ,z)>0

P∗(z | y)HL(P∗(· | y , z)) =
∑
x

P∗(x | y)λ∗x ;

(ii) for every y ∈ Y , for all P ′ ∈ ∆X , let
P ′(x , z | y) := P ′(x)P(z | x , y); then∑

z∈Z:
P′(z | y)>0

P ′(z | y)HL(P ′(· | y , z)) ≤
∑
x

P ′(x | y)λ∗x .
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Theorem applied to numerical example

We give a numerical example where all variables are binary, and find
P∗ analytically using the theorem:

for Brier loss, and

for logarithmic loss

The two solutions (and thus the resulting decisions) are different,
even though both loss functions are strictly proper scoring rules
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The end

+ Come to the poster! +
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